首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Third phase formation in the extraction of Th(IV) by 1.1 M solutions of tri-n-butyl phosphate (TBP) in n-decane and n-hexadecane from Th(NO3)4 solution in 1 M HNO3 has been investigated as a function of equilibrium aqueous phase Th(IV) concentration ([Th(IV)]aq,eq) to estimate the concentrations of Th(NO3)4, HNO3, and TBP in the third phase (TP) and the diluent-rich phase (DP). In this connection, new methods for the estimation of TBP in the organic phases after the phase splitting have been developed by exploiting the linear relationships of the density and refractive index of the solvent, the limiting organic concentration (LOC) for the third phase formation in the extraction of Th(IV) from solution with near-zero free acidity with TBP concentration in the solvent. TBP concentrations estimated by the above-mentioned methods have been validated by nitric acid (8 M) equilibration method. Experimental values for the concentration of TBP in the TP and DP for 1.1 M TBP/n-alkane–Th(NO3)4/1 M HNO3 systems have been compared with the values computed based on a model proposed earlier. In addition, the density of organic phases and the ratio of the volume of the DP to that of the TP have been measured for the above-mentioned systems as a function of [Th(IV)]aq,eq at 303 K.  相似文献   

2.
Binary solutions of tri-n-butyl phosphate (TBP) or tri-iso-amyl phosphate (TiAP) in n-dodecane or n-tetradecane (1.1 M) as diluents have been investigated for third phase formation in the extraction of Th(NO3)4 from its solutions with 1 M or 5 M HNO3 as a function of equilibrium aqueous phase Th(IV) concentration ([Th(IV)]aq,eq) at 303 K. Extraction isotherms for the extraction of Th(IV) and HNO3 have been generated with respect to [Th(IV)]aq,eq. The difference in density between the third phase and the diluent-rich phase as well as the diluent-rich phase and the pure diluent, ratio of volume of the diluent-rich phase to that of the third phase have also been determined over a wide range of [Th(IV)]aq,eq in the triphasic region. An attempt has also been made to determine the extractant concentrations in the third phase and the diluent-rich phase in the extraction of Th(NO3)4 by the above solvents from its saturated solutions with 1 M and 5 M HNO3.  相似文献   

3.
Third‐phase formation in the extraction of Th(IV) by trialkyl phosphates (TalP) such as tri‐n‐butyl phosphate (TBP), tri‐iso‐butyl phosphate (TiBP), tri‐sec‐butyl phosphate (TsBP), tri‐n‐amyl phosphate (TAP), tri‐2‐methylbutyl phosphate (T2MBP), tri‐iso‐amyl phosphate (TiAP), tri‐sec‐amyl phosphate (TsAP), and tri‐cyclo‐amyl phosphate (TcyAP) has been investigated under various conditions. Formation of a third phase in the extraction of Th(IV) by TBP/n‐dodecane as a function of TBP concentration at 303 K was studied. Measurements were also carried out on the extraction of Th(IV) from its solution with near‐zero free acidity by various phosphate/diluent binary solutions (1.1 M) as a function of temperature. Third‐phase formation in the extraction of Th(IV) by 1.1 M TalP in various diluents from nitric acid media has also been studied as a function of equilibrium aqueous‐phase acidity at 303 K. Empirical equations to predict limiting organic concentration with respect to various parameters for third‐phase formation in the extraction of Th(IV) by TBP and TAP from nitric acid media have been derived. Some of the above phosphates have been investigated for the distribution of Th(NO3)4 between the “diluent‐rich phase” (DP) and “third‐phase” (TP) in the extraction of Th(IV) by 1.1 M TalP in various diluents from its saturated solution with near‐zero free acidity at 303 K. Results of the above studies are presented in this paper. Based on these studies, the effects of extractant concentration, the temperature, the nature of the diluent, the equilibrium aqueous‐phase acidity, and the structure of the extractant on third‐phase formation behavior of trialkyl phosphates are described in this paper.  相似文献   

4.
《分离科学与技术》2012,47(13):2013-2019
Separation of U(VI) from Th(IV) and rare earth elements (REEs) present in monazite leach solution (nitric acid medium) has been studied using tris(2-ethylhexyl) phosphate (TEHP) and tri-n-butyl phosphate (TBP) dissolved in n-paraffin as solvents under varying experimental conditions such as nitric acid, extractant and metal ion concentrations etc. There is an increase in distribution ratio of U(VI) (D U ) with increase in aqueous phase acidity up to 5 M HNO3 beyond which a decrease is observed. Typically for 1 × 10?3 M U(VI), the DU values increase from 8 (0.5 M HNO3) to 80 (5 M HNO3) for 1.1 M TEHP, and from 2 (0.5 M HNO3) to 43 (5 M HNO3) for 1.1 M TBP in n-paraffin. The separation factors of U(VI) (β: DU/DM) over metal ions (M) such as Th(IV) and Y(III) (chosen as a representative of heavy REEs) are better for TEHP than TBP at all nitric acid concentrations. Batch solvent extraction data have been used to construct the McCabe-Thiele diagrams for the recovery of U(VI) employing TEHP as the extractant. A process flow sheet has been proposed with 0.2 M TEHP in n-paraffin as solvent for the recovery of U(VI) from simulated monazite leach solution in HNO3 medium.  相似文献   

5.
Separation of U(VI) and Th(IV) from Nd(III) in nitric acid media with solutions of tri-iso-amyl phosphate (TiAP) in n-dodecane has been studied by batch extraction in cross-current mode to evaluate the feasibility of employing TiAP as an alternate extractant to tri-n-butyl phosphate (TBP) for monazite ore processing. The interference of U(VI), Th(IV), and Nd(III) in the presence of each other during their analyses by titrations has also been validated in the present study. The extraction studies substantiate that the high solvent loading conditions can be achieved without organic phase splitting in the extraction from concentrated feed solutions with TiAP based solvents, whereas TBP forms third phase under such conditions. The separation factor for Th(IV) with respect to Nd(III) can be improved with TiAP as the extractant and by carrying out the extraction with feed solution in 8 M HNO3. Solvent extraction studies conducted with solutions of U(VI), Th(IV), and Nd(III) in nitric acid media by TBP and TiAP revealed the identical extraction, scrubbing, and stripping behavior of both the extractants with respect to U(VI), Th(IV), and Nd(III). The results insinuate that TiAP can be used as an alternate extractant to TBP for the separation of U(VI) and Th(IV) from monazite ores. The data generated in the present study can be exploited for the development of flow sheets using TiAP based solvents to separate U(VI) and Th(IV) from rare earths for the processing of monazite leach solutions.  相似文献   

6.
《分离科学与技术》2012,47(18):2761-2770
Third phase formation in the extraction of Th(NO3)4 from its solution with near-zero free acidity by 1.1 M solutions of tri-iso-amyl phosphate (TiAP) in n-dodecane, n-tetradecane, n-hexadecane, and n-octadecane has been investigated as a function of equilibrium aqueous phase Th(IV) concentration at 303 K. Distribution of Th(NO3)4 between organic and aqueous phases as well as the variation of densities of organic phases in biphasic and triphasic regions for its extraction by the above-mentioned solvents have been investigated with respect to equilibrium aqueous phase Th(IV) concentration under the above experimental conditions. Data on the ratio of volume of the diluent-rich phase to that of third phase for various TiAP/n-alkane-Th(NO3)4-303 K systems have also been generated in the present study. The results obtained are compared with literature data available for tri-n-butyl phosphate (TBP) and tri-n-amyl phosphate (TAP) systems which were experimented under identical conditions.  相似文献   

7.
The density of various trialkyl phosphates (TalP) such as tri‐n‐butyl phosphate (TBP), tri‐iso‐butyl phosphate (TiBP), tri‐sec‐butyl phosphate (TsBP), tri‐n‐amyl phosphate (TAP), tri‐2‐methylbutyl phosphate (T2MBP), tri‐iso‐amyl phosphate (tri‐3‐methylbutyl phosphate, TiAP), tri‐sec‐amyl phosphate (tri‐2‐amyl phosphate, TsAP), tri‐cyclo‐amyl phosphate (TcyAP), tri‐n‐hexyl phosphate (THP), and 1.1 M solutions of some of these phosphates in various diluents, solubility of water in trialkyl phosphates, and the aqueous solubility of trialkyl phosphates have been measured. Extraction of nitric acid, Th(IV), and U(VI) by trialkyl phosphates has also been studied by the batch extraction method. Metal‐solvate stoichiometry in the extraction of Th(IV) and U(VI) by some of the phosphates has been evaluated. Data on the extraction of U(VI) by various trialkyl phosphates as a function of equilibrium aqueous‐phase nitric acid concentration at 303 K are presented in this paper. Data on the extraction of Th(IV) and U(VI) from 1 M and 5 M HNO3 by trialkyl phosphates as a function of equilibrium aqueous‐phase metal concentration at 303 K are also presented in this paper. The effects of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior are described in this paper.  相似文献   

8.
《分离科学与技术》2012,47(20):3831-3848
Abstract

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions—TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol·dm?3 HNO3 concentration, 2.188 mol·dm?3 TBP concentration, and 25°C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.  相似文献   

9.
《分离科学与技术》2012,47(15):1293-1316
Abstract

The transport of Zr(IV) through tri-n-butylphosphate-xylene-based liquid membranes, supported in a polypropylene hydrophobic microporous film, has been studied. The concentration of HNO3 in the feed solution and tri-n-butylphosphate (TBP) carrier in the membrane were varied, and the flux and permeability coefficients were determined. The optimum conditions found for maximum flux were determined to be 10 mol/dm3 HNO3 and 2.93 mol/dm3 TBP with a flux value of 12.9 × 10?6 mol · m?2 · s?1. The solvent extraction study revealed that 1.25 to 3.5 protons are involved in zirconium transport, and that two molecules of TBP are involved in the complex formation. The value of protons involved varies with acid concentration. The zirconium ion transport is coupled with nitrate ions transport.  相似文献   

10.
The composition and speciation of the organic and third phases in the system HNO3/TBP (tri-n-butyl phosphate)/n-dodecane have been examined by a combination of gravimetric, Karl Fischer analysis, chemical analysis, FTIR, and 31P NMR spectroscopy, with particular emphasis on the transition from the two-phase to the three-phase region. Phase densities indicate that third-phase formation takes place for initial aqueous HNO3 concentrations above 15 M, while the results from the stoichiometric analysis imply that the organic and third phases are characterized by two distinct species, namely the mono-solvate TBP?HNO3 and the hemi-solvate TBP?2HNO3, respectively. Furthermore, the 31P NMR spectra of organic and third phase show no significant chemical differences at the phosphorus centers, suggesting that the second HNO3 molecule in the third phase is bound to HNO3 rather than TBP. The third-phase FTIR spectra reveal stronger vibrational absorption bands at 1028, 1310, 1653, and 3200–3500 cm?1, reflecting higher concentrations of H2O, HNO3, and TBP. The molecular dynamics simulation data predict structures in accord with the spectroscopically identified speciation, indicating inequivalent HNO3 molecules in the third phase. The predicted structures of the organic and third phases are more akin to microemulsion networks rather than the distinct, reverse micelles assumed in previous studies. H2O appears to be present as a disordered hydrogen-bonded solvate stabilizing the polar TBP/HNO3 aggregates in the organic matrix, and not as a strongly bound hydrate species in aggregates with defined stoichiometry.  相似文献   

11.
N,N-dialkyl aliphatic amides with varying alkyl groups have been compared with organophosphorous extractants, tri-n-butyl phosphate (TBP) for third phase formation behavior during the extraction of Th(IV) and U(VI) from nitric acid medium. Dihexyl decanamide (DHDA) appears to be better in comparison to TBP with respect to third phase formation during thorium extraction. The effects of aqueous phase acidity and the nature of diluents on the third phase formation are studied. The limiting organic phase concentration (LOC) values for U(VI) and Th(IV) with branched chain, di(2-ethylhexyl) isobutyramide (D2EHIBA) increased with ligand concentration, while the critical aqueous concentration (CAC) values of metal ions decreased.  相似文献   

12.
《分离科学与技术》2012,47(4):592-600
The permeation of U(VI) from nitric acid medium using supported liquid membrane (SLM) technique has been studied employing varying compositions of feed (uranium concentration and acidity), carrier, and receiving phase. Microporous polytetrafluoroethylene (PTFE) membranes were used as a solid support and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) either alone or as a mixture of neutral donors like tri-n-butyl phosphate (TBP), tris(2-ethylhexyl) phosphate (TEHP), and tri-n-octyl phosphine oxide (TOPO) dissolved in n-parrafin as the carrier. Oxalic acid/Na2CO3 solutions were used as the receiving phase. The permeability coefficient (P) of U(VI) decreased with increased nitric acid concentration up to 3 M HNO3 and thereafter increased up to 5 M HNO3. Uranium permeation was also investigated from its binary mixtures with other metal ions such as Zr(IV), Th(IV), and Y(III) at 2 M HNO3 employing 0.1 M PC88A/n-paraffin as the carrier, and 0.5 M oxalic acid as the receiver phase. The presence of neutral donors in the carrier solution enhanced the permeation of U(VI) across the SLM in the following order: TEHP ~ TBP > TOPO using 0.1 M oxalic acid as receiver phase. There was significant enhancement in uranium transport for feed acidity ≤2 M HNO3 employing 1 M Na2CO3 as the receiver phase. These studies suggested that 0.1 M PC88A and 0.5 M oxalic acid as carrier and receiver phases appear suitable for selective and faster transport of uranium from the uranyl nitrate raffinate (UNR) waste solutions.  相似文献   

13.
ABSTRACT

The extraction behaviour of 1M solutions of tri-2-ethylhexyl phosphate (TEHP), di-2-ethyl hexyl isobutyramide (D2EHIBA), tri-n-butyl phosphate (TBP) and di-n-hexyl hexanamide (DHHA) in n-dodecane towards U(VI), Th(IV) and Pa(V) in the presence of 220 g/L of Th from nitric acid medium has been studied. The limiting organic concentrations (LOC) of thorium (g/L) for 1 M TBP and 1 M DHHA are evaluated as 31, 20 ( at 1 M HNO3) and 25,13 (at 4 M HNO3) respectively. The distribution ratio (D) values of U(VI), Th(IV) and Pa(V) in the presence of thorium (220 g/L) at. 1 M HNO3 suggest that branching in the alky group of amides suppresses the extraction considerably. In view of the selective extraction of U over Th by 5 % TBP in THOREX process at 4 M HNO3, distribution behaviour is also studied employing a lower concenfration (0·18 M) of extractant for comparison purpose, Separation factor (S. F.) values for U(VI) over Th(IV) under different experimental conditions consistently varied in the order: D2EHIBA > DHHA > TEHP > TBP. The quantitative extraction of 233U from a synthetic mixture containing 233U (10?5 M). 233Pa (10?11 M) and thorium (220 g/L) at 1 M HNO3 using 1 M solution of D2EHIBA in n-dodecane is achieved in three stages, Stripping and reusability studies of D2EHIBA have also been carried out.  相似文献   

14.
Abstract

The extraction of uranium(VI) by triisoamyl phosphate (TiAP) has been studied to derive the thermodynamic parameters such as entropy change and the free-energy change. The extraction of U(VI) and Pu(IV) has also been studied with 1.1 M solutions of tri-n-butyl phosphate (TBP), tri-n-amyl phosphate (TAP), and TiAP as a function of temperature. While the enthalpy of U(VI) extraction was found to be exothermic, the enthalpy for the extraction of Pu(IV) was always found to be endothermic. The temperature at which the distribution ratios of U(VI) and Pu(IV) cross each other (the temperature of inversion) has been derived for TBP, TAP, and TiAP, and the results reveal the lowest temperature of inversion occurs for TiAP. The results indicate the advantage of TiAP as an extractant in avoiding plutonium reflux during the PUREX process involving high plutonium feed solutions, in addition to lower aqueous solubility, freedom from the third-phase formation problem, lower degradation, and better economics.  相似文献   

15.
The distribution of Np(IV) between 0.08–4.5 M HNO3(aq,eqm) and ~30% tributyl phosphate has been modelled, accounting for the formation of 1:1 and 1:2 nitrate complexes and Np(IV) hydrolysis in the aqueous phase and the extraction of Np(NO3)4(TBP)2 into TBP. The potential formation and extraction of NpOH(NO3)3(TBP)2 and Np(NO3)4(TBP)2.HNO3 species, including spectroscopic evidence, and oxidations of Np(IV) to Np(V) and Np(VI) in the solvent phase have also been considered. The model highlights some key gaps in the available thermodynamic data.  相似文献   

16.
Liquid-liquid extraction (LLE) is a widely used separation method for an extensive range of metals including actinides. The Gibbs energy minimization (GEM) method is used to compute the complex chemical equilibria for the LLE system HNO3–H2O–UO2(NO3)2–TBP plus diluent at 25°C. The nonelectrolyte phase is treated as an ideal mixture defined by eight tri-n-butyl phosphate (TBP) complexes plus the inert diluent. The Pitzer method is used to capture nonidealities in the concentrated electrolyte phase. The generated extraction isotherms are in very good agreement with reported experimental data for various TBP loadings and electrolyte concentrations demonstrating the adequacy of this approach to analyze complex multiphase multicomponent systems. The model is robust and yet flexible allowing for expansion to other LLE systems and coupling with computational tools for parameter analysis and optimization.  相似文献   

17.
《分离科学与技术》2012,47(7):571-589
Abstract

The synergistic extraction of Pu(IV) from perchloric acid solutions into mixtures of thenoyltrifluoroacetone (HTTA) and tri-n-butylphosphate (TBP) in benzene was investigated by solvent extraction methods. The adduct responsible for synergism was found to be Pu(TTA)4·TBP. The adduct formation between Pu(TTA)4 and TBP in the benzene phase was also investigated by spectrophotometry. The equilibrium constants for the equilibria involved were obtained both by solvent extraction and by spectrophotometric methods.  相似文献   

18.
《分离科学与技术》2012,47(7):997-1005
The equilibrium study on reactive extraction of picolinic acid by six different extractants (phosphoric and aminic) dissolved in two different diluents (benzene and decane-1-ol) is carried out to evaluate the performance of extractants and diluents. The extraction ability in terms of the distribution coefficient (K D) is found to be in the order of tri-n-octylamine (TOA) ≥ tri-n-dodecylamine (TDDA) > di-2-ehylhexyl phosphoric acid (D2EHPA) > tri-n-butyl phosphate (TBP) > tri-octyl methyl ammonium chloride (Aliquat 336) > tri-n-octyl phosphine oxide (TOPO) with both diluents. Decan-1-ol is found to be the better solvating medium for the acid-extractant complexes. A mathematical model based on mass action law is employed to estimate the values of partition coefficient (P) and dimerization constant (D) in physical extraction, and equilibrium extraction constants (K E) in chemical extraction. The values of loading ratios (Z) less than 0.5 imply the formation of (1:1) acid:extractant solvates in the organic phase. Decan-1-ol with TOA is the most effective solvation medium with K D, max = 9 at 0.01 kmol · m?3 of picolinic acid and K E = 19.448 m3 · kmol?1.  相似文献   

19.
《分离科学与技术》2012,47(10):1492-1497
Extraction behavior of neptunium has been compared for tri-n-butyl phosphate (TBP) and N,N-dihexyl octanamide (DHOA) extractants as a function of nitric acid concentration (0.5 ? 6 M HNO3), uranium loading (50 and 300 g/L relevant to Pu rich fast reactor and Pressurized Heavy Water Reactor, PHWR spent fuels, respectively), and in the presence of oxidizing and reducing agents. These studies suggest the possibility of co-recovery of U(VI), Pu(IV) and Np(IV) from spent fuel dissolver solutions (of Pu rich fuels) employing DHOA as extractant.  相似文献   

20.
The synergic solvent extraction system of tri-n-butyl phosphate (TBP) and FeCl3 (or ionic liquids, ILs) has been extensively studied for selective extraction of Li from Mg-containing brines. However, Cyanex 923 (C923), which extracts many metals stronger than TBP, has not yet been examined for Li/Mg separation. Here, we report on the unexpected observation that the C923/FeCl3 system has opposite Li/Mg selectivity compared to the TBP/FeCl3 system. Detailed investigations show that the opposite selectivity of the C923/FeCl3 (or IL) system is due to three factors: (1) the strong extraction of Fe by C923 leads to a low concentration of [FeCl4] in the system, which is essential for Li extraction; (2) C923 in combination with an IL extracts Mg strongly by an ion-pair mechanism; (3) most importantly, C923 extracts Mg by solvation, resulting in an insufficient concentration of C923 for Li extraction. The unexpected poor Li/Mg selectivity of C923 highlights the irreplaceable role of TBP in the selective recovery of Li.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号