共查询到10条相似文献,搜索用时 31 毫秒
1.
《食品与发酵工业》2017,(5)
以脱脂乳为原料,通过超滤、洗滤、离子交换和喷雾干燥制备了脱钙率为0%、11%、19%、27%和37%的浓缩乳蛋白(milk protein concentrate,MPC),并在35℃加速贮藏4个月,采用聚丙烯酰胺凝胶电泳、激光共聚焦、激光粒度仪等方法分析了MPC中可溶性蛋白的含量、组成及其溶解液的微观结构和粒径分布,旨在探讨脱钙程度对MPC溶解性和贮藏稳定性的影响。脱钙MPC的初始溶解度都在95%以上,且随脱钙程度的增加而略有提高。在贮藏过程中,0%脱钙MPC的溶解度显著降低;11%脱钙MPC的溶解度随贮藏时间增加而显著降低;19%~37%脱钙MPC的溶解度在贮藏期内几乎不变。MPC溶解度的降低,主要是由酪蛋白聚集所致。MPC的脱钙率越高,其在水中的分散程度越高,且分散程度随贮藏时间降低的速度越慢。综上所述,当脱钙率达到19%及其以上时,MPC具有良好的溶解性和贮藏稳定性。 相似文献
2.
《食品与发酵工业》2016,(9):58-63
研究了浓缩乳蛋白的离子脱钙技术,以及部分脱钙对截留液中酪蛋白存在形式及酪蛋白胶束水合率的影响。研究确定了离子交换树脂的平衡脱钙时间为2 h,并通过改变树脂添加量得到了0、5%.5%、10.5%、19.6%、29.6%、38.7%、49.9%、63.8%和83.6%系列脱钙程度的截留液。随着脱钙程度的增加,截留液超离心上清中游离酪蛋白的含量逐渐增加,而超离心沉淀的胶束酪蛋白减少,说明酪蛋白逐渐从酪蛋白胶束中游离出来。当脱钙程度为0~29.6%时,酪蛋白胶束的水合率从2.6 g/g(干基)增加到4.1 g/g(干基),而脱钙程度从29.6%进一步增加到83.6%时,酪蛋白胶束水合率则变小至3.3 g/g(干基)。浓缩乳蛋白的钙离子含量以及酪蛋白的存在状态决定了其在应用时的功能特性,研究对开发新型的浓缩乳蛋白配料具有重要的指导意义。 相似文献
3.
《食品与发酵工业》2019,(12):75-82
以一系列脱钙梯度的浓缩乳蛋白(milk protein concentrate,MPC)为原料制备高蛋白营养棒(highprotein nutrition bar,HPNB)模型体系,采用低场核磁和全质构分析等探究了MPC的脱钙处理对HPNB中小分子迁移和质构的影响。随脱钙率升高,HPNB中小分子迁移达到平衡所需时间变短,体系中蛋白颗粒更易与小分子相融合,得到的体系更均一稳定,当脱钙率 28. 3%时,体系中小分子分布差异较小,体系均为均一稳定相。脱钙使得体系硬度和内聚性均增大,不易发生碎裂,脱钙率为28. 3%时,体系硬度适中,内聚性显著提高,满足储藏要求,同时也可保留MPC中的大部分的钙成分;而脱钙率 28. 3%时,体系硬度过大,钙成分少,不易被消费者接受,这一研究结果有利于拓宽浓缩乳蛋白配料在高蛋白营养棒领域的应用。 相似文献
4.
研究了蒸发浓缩乳蛋白浓缩物(EP-MPC)和纳滤浓缩乳蛋白浓缩物(NF-MPC)的乳化性能,并比较了MPC的质量浓度对两种乳蛋白浓缩物乳化能力和乳化稳定性的影响。结果表明,两种MPC均可以在质量浓度为60g/L时形成良好乳浊液,此时它们的乳化能力没有显著性差别。但无论是刚形成的乳浊液还是贮藏一段时间后,NF-MPC稳定的乳浊液的稳定性明显高于EP-MPC。同时EP-MPC对浓度的变化较为敏感,低于或高于最适浓度都会导致乳化液滴粒径大幅度增加,且乳化液更加不稳定。 相似文献
5.
乳清浓缩蛋白(WPC)相比β-乳球蛋白和乳清分离蛋白(WPI)成分更为复杂,其热聚合形成纤维聚合物的条件不同于β-乳球蛋白和WPI的形成条件.在pH值为1.8,90 ℃热处理10h的条件下,蛋白质量分数为3%的WPC可形成良好的纤维聚合物.通过测定表观度、乳化性和起泡性,比较乳清浓缩蛋白纤维聚合物与常规聚合物界面性质的差异,结果表明,纳米纤维聚合物具有较低的表观度,乳化性能和起泡性能有显著改善. 相似文献
6.
以浓缩乳蛋白(MPC)为研究对象,通过向MPC中加入不同熔点的乳脂模拟物来制备含脂浓缩乳蛋白模型体系,旨在研究脂对储藏过程中MPC溶解稳定性的影响。分别考察了模型含脂乳粉在45℃(相对湿度23%)和35℃(相对湿度11%)下分别储藏30 d和60 d后的溶解度变化,通过讨论储藏过程中脂质氧化、蛋白氧化、蛋白不溶物的形成等对MPC溶解度下降的分子机制进行了探索。研究结果表明,虽然不同熔点的脂在储藏初期时对MPC溶解度的下降具有一定的影响,但是脂质氧化和蛋白氧化都不是MPC在储藏过程中溶解度下降的关键因素,经由氢键、二硫键和疏水相互作用所形成的酪蛋白不溶物才是影响MPC溶解度的主要原因。 相似文献
7.
8.
9.
蛋白质热聚集行为是食品加工过程中较常发生的现象。热处理条件会使蛋白质结构发生变化,引起蛋白质的理化性质的改变,从而导致蛋白质发生热聚集。热聚集体的大小、形态、界面性等直接影响蛋白质凝胶特性、溶解性、起泡性、乳化性等功能特性,从而影响富含蛋白质食品的品质。本文介绍了蛋白质热聚集行为的机理、分类和表征手段,重点综述了蛋白质热聚集行为的影响因素,及蛋白质热聚集行为对蛋白质功能特性的影响,为研究复杂蛋白质体系热聚集行为及对食品品质的影响提供理论基础。 相似文献
10.
通过向乳清浓缩蛋白纳米纤维中添加一定量的氯化钙后热处理不同时间(0、1、2、3、4、5 h),研究不同热处理时间对Ca-WPC纳米纤维聚合物起泡性的影响。结果表明Ca-WPC纳米纤维聚合物的起泡能力在热处理3 h时达最大值96.00%±0.02%,是对照组Ca-WPC常规聚合物热处理3 h时的2.13倍;Ca-WPC常规聚合物在不同热处理时间后其泡沫稳定性均为零,而Ca-WPC纳米纤维聚合物随着热处理时间延长其泡沫稳定性先增加后减小,热处理3 h时达到最大值为62.38%±1.51%,即热处理一定时间可以显著提高Ca-WPC纳米纤维聚合物的起泡性。 相似文献