首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In the present study, biodiesel production from the crude cotton-seed oil (CSO) and its feasibility to be used as fuel in compression ignition engine was analysed. Single-stage transesterification at molar ratio of 8:1 on crude CSO yielded 94% of cottonseed biodiesel (CBD). Gas chromatogram/mass spectrometry analysis revealed the presence of 19.5% unsaturated and 80.5% saturated esters in cotton seed biodiesel. Taguchi approach identified the stable fuel blend with oxygenate concentration. Increased oxygen concentration up to 20% were also analysed to understand the variation. Higher peak in-cylinder pressure was observed in D80CBD20 fuel blend. Diesel–biodiesel blend with oxygenate significantly affected the ignition delay and also resulted in varied exhaust gas temperature. D80CBD20nB10 showed an increase in brake thermal efficiency, whereas D80CBD20 exhibited higher brake specific energy consumption at full load. Carbon monoxide, hydrocarbon and smoke emission was found to be high in diesel with higher oxides of nitrogen in D80CBD20nB10. This experimental investigation finally revealed that, D80CBD20nB10 improved the combustion and performance characteristics with minimal emissions.

Abbreviations ASTM: American Society for Testing and Materials; BP: brake power; BSEC: brake specific energy consumption; BTE: brake thermal efficiency; CBD: cottonseed biodiesel; CI: compression ignition; CO: carbon monoxide; CO2: carbon dioxide; CSO: cottonseed oil; DEE: diethyl ether; DOE: design of experiments; EGT: exhaust gas temperature; FTIR: Fourier transform infrared spectrometry; GC/MS: gas chromatogram/mass spectrometry; HC: hydrocarbon; HRR: heat release rate; HSDI: high speed direct injection; IDI: indirect injection; KOH: potassium hydroxide; MFB: mass fraction burned; NaOH: sodium hydroxide; NMR: nuclear magnetic resonance; N2O: nitrous oxide; NO: nitric oxide; NO2: nitrogen dioxide; NO x : oxides of nitrogen; ROHR: rate of heat release; ROPR: rate of pressure rise; SOC: start of combustion; aTDC: after top dead centre; bTDC: before top dead centre  相似文献   


2.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

3.
Stringent emission regulations and health awareness about air pollution have led researchers to find alternative means of minimising emissions in diesel engines. In this article, the influence of oxygen enrichment is discussed to determine the effect on diesel engine performance, emission characteristics and combustion characteristics. Normal diesel and oxygen-enriched diesel are used in this experiment. The increase in oxygen concentration led to complete combustion, producing higher thermal efficiency and low harmful emissions. From the results, it is noted that oxygen-enriched diesel fuel showed reduction of CO, HC and smoke emissions, while NOx emission increased.

Abbreviations/Nomenclature DI: direct injection; NOx: oxides of nitrogen; O2: oxygen; HC: hydrocarbon; PM: particulate matters; CO: carbon monoxide; CO2: carbon dioxide  相似文献   


4.
The present experimental investigation focuses on production of biodiesel from marine macro algae Stoechospermum marginatum, a brown seaweed. S. marginatum was collected from the intertidal zone of coastal Tamil Nadu. Processed macro algae were subjected to lipid extraction through maceration and soxhlet methods. A single-stage transesterification process with methanol and NaOH was employed to synthesise biodiesel from crude algal oil. Characterisation of algal biodiesel (ABD) was carried out through analysis of gas chromatography mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) studies. GC-MS analysis revealed the presence of 14 different fatty acid methyl esters in ABD by their fragmentation patterns and retention time. The NMR and FTIR spectroscopy analysis confirmed the GC-MS data. The physiochemical properties of ABD were also determined through American Standards for Testing Materials methods and found to be within limits.

Abbreviations ABD: algal biodiesel; AO: algal oil; ASTM: American Society for Testing and Material; CO: carbon monoxide; CO2: carbon di oxide; D: mineral diesel; FAME: fatty acid methyl ester; FFA: free fatty acids; FTIR: Fourier transform infrared spectroscopy; GC-MS: gas chromatography mass spectroscopy; HC: hydrocarbon; JBD: jatropha biodiesel; NMR: nuclear magnetic resonance; NO x : oxides of nitrogen; PBD: palm oil biodiesel  相似文献   


5.
The current work is to investigate the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca (BA) biodiesel and compare those with the performance and combustion characteristics of palm biodiesel, sesame biodiesel,rapeseed biodiesel, soybean biodiesel and diesel fuel. In this study, only 10% of each biodiesel (BA10, PALM10, SESAME10, RAPESEED10 and SOYBEAN10) was tested in a diesel engine. The physical properties of all the fuel samples are mentioned and compared with ASTM standards. The test rig consists of a single cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine, which was used to evaluate their performance at a measured torque. All biodiesel fuel samples reduce brake power and brake thermal efficiency and increase brake-specific fuel consumption rate than diesel fuel. Combustion characteristics results indicated that the blended fuel samples performed with a significant reduction in terms of cylinder pressure and heat release rate compared with diesel fuel apart from diesel pressure. Among the biodiesel-blended fuel samples, BA10 showed better performance in terms of brake power, brake-specific fuel consumption and brake thermal efficiency and cylinder pressure and heat release rate in terms of combustion characteristics compared with D100.  相似文献   

6.
The full load performance characteristics of a diesel engine fuelled with palm kernel biodiesel and its blend with diesel fuel are presented in this paper. The biodiesel was synthesised from Nigerian palm kernel oil through a direct base catalysed transesterification process using sodium hydroxide and methanol as the catalyst and alcohol, respectively. The produced biodiesel was blended with neat diesel fuel at a ratio of 20% biodiesel to 80% diesel by volume. The engine torque, brake power, brake specific fuel consumption and brake mean effective pressure were determined for each of the fuels at 400 rpm intervals between 1200 and 3600 rpm. In other to establish a baseline for comparison, the engine was first run on neat diesel. The test results interestingly revealed that the fuel blend (B20) produced higher torque at low and medium engine speeds than neat diesel fuel and unblended biodiesel (B100). This suggests that it can be a suitable fuel for heavy duty engines that are required to develop high torque at low engine speeds. It was also observed that diesel fuel developed higher torque and brake power than the unblended biodiesel (B100) at all tested speeds and showed the least brake specific fuel consumption possibly because of its higher heating value. In all, the palm kernel biodiesel and its blend (B20) exhibited performance characteristic trends very similar to that of diesel fuel thus confirming them as suitable alternative fuels for compression ignition engines.  相似文献   

7.
Petroleum-based fuels is a finite resource that is rapidly depleting. Consequently, petroleum reserves are not sufficient enough to last many years. In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for direct injection (DI) diesel engines. The experimental work has been carried out to estimate the combustion characteristics of a single-cylinder, four-stroke, DI diesel engine fuelled with corn oil methyl ester (COME) and diesel blends. The COME was preheated to temperatures namely 50°C, 70°C and 90°C before it was supplied to the engine. The optimised preheated temperature of 70°C was chosen based on the higher brake thermal efficiency and lower specific fuel consumption. The performance, emission and combustion characteristics are evaluated by running the engine with COME and diesel blends at this preheated temperature. In this paper, the combustion characteristics are only discussed. The combustion characteristics such as ignition delay, maximum rate of pressure, heat release rate, cumulative heat release rate, mass fraction burned and combustion duration of COME methyl ester and diesel were evaluated and compared with neat diesel. The rate of pressure rise and maximum combustion pressure inside the cylinder were high for COME blends compared with neat diesel. The heat release rate of diesel is higher compared with COME blends. The ignition delay and combustion duration are decreased for COME blends compared with neat diesel. The cumulative heat release rate and mass fraction burnt of COME blends are higher than neat diesel.  相似文献   

8.
This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.  相似文献   

9.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

10.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

11.
The paper reports an attempt to test the feasibility of Jatropha methyl ester as a fuel in the engine fuel of a compression ignition engine (C.I.) with turbulence inducements in the combustion chamber. The inefficient mixing of biodiesel oils with air contributes to incomplete combustion. These problems can be eliminated by enhancing in‐cylinder turbulence by providing two holes on the piston crown (internal jet piston) and esterification of the vegetable oil into biodiesel. The performance characteristics revealed that the brake thermal efficiency of the Jatropha methyl ester with an internal jet piston was higher than with a base engine piston. The internal jet piston operation with Jatropha methyl ester exhibited desirable characteristics for other emissions such as lower carbon monoxide (CO), hydrocarbons (HCs) and smoke. The oxides of nitrogen (NOx) emissions were higher for the internal jet piston with increasing load, compared to the base engine piston.  相似文献   

12.
Biodiesel is a promising renewable alternative fuel for diesel. The need of biodiesel fuels for the diesel engines is to restrict the dependency on the fossil fuels in context to the world energy oil crisis. The objective of this article is to investigate the performance and emission characteristics of a CI engine with diesel and blends of canola biodiesel Emulsion at 200, 220 and 240?bar. The fuel injection system in a diesel engine is to achieve a high degree of atomisation for better penetration of fuel in order to utilise the full air charge and to promote the evaporation in a very short time and to achieve higher combustion efficiency. Emulsified fuels showed an improvement in brake thermal efficiency of 28.8% at 240?bar accompanied by the drastic reduction in NOx at 200?bar.  相似文献   

13.
In the present study, the surface of cylinder head, piston, exhaust and inlet valves of a four stroke direct injection and single cylinder diesel engine has been coated with partially stabilised zirconia (PSZ) by the plasma spray method. The coated engine was tested with the neat diesel and methyl ester of neat Nerium oil. The performance and emission results were compared with the uncoated engine fuelled with diesel and methyl ester of Nerium oil (MEON). Specific fuel consumption of the PSZ-coated engine was lower at all loads, because of the insulation effect of coating and changes in combustion process due to coating. The brake thermal efficiency of PSZ-coated engine fuelled with MEON is 3.8% higher than uncoated engine fuelled with MEON. The emission for the PSZ-coated engine with diesel was improved compared with uncoated engine except NOx.  相似文献   

14.
The present work deals about the performance, emission and combustion characteristics of a four-cylinder, direct injection, water-cooled, Indica diesel engine fuelled with biodiesel produced through the hydrodynamic cavitation method from an underutilised and potential feedstock Yellow Oleander (Thevetia peruviana) oil. Engine tests were performed with neat diesel and biodiesel blends of 10%, 20% and 30% from Yellow Oleander oil at different engine speeds. Experimental results showed that biodiesel produced through the hydrodynamic cavitation technique with a 1%?w/w catalyst percentage, 6:1?molar ratio and 35?min reaction time was equal to 97.5%. During engine performance tests, biodiesel blends showed higher brake-specific fuel consumption, brake thermal efficiency (for lower blends up to 20%) and exhaust gas temperature than diesel fuel. Engine emissions showed higher nitrogen oxide, but a decreased amount of smoke opacity, carbon monoxide, unburned hydrocarbon and favourable pθ diagram as compared to diesel.  相似文献   

15.
ABSTRACT

The main emphasis of this work is to explore the biodiesel obtained from waste cooking oil and its utilisation in CI engine blended with ethanol and conventional diesel. Waste cooking oil methyl esters (WCOME) was prepared by transesterification with a heterogeneous catalyst such as CaO. Diesel and WCOME blends of five different proportions with 5% of ethanol uniformly added to them were used as a fuel in a variable compression ratio, constant speed, compression ignition engine. The performance, emission and combustion characteristics of the engine at part and full load conditions were compared with that of neat diesel, varying the compression ratio from 18 to 22. From the experimental results, the blend comprising 20% waste cooking oil, 5% ethanol and 75% mineral diesel showed ameliorated performance and emission characteristics, compared with all the other fuel blends at an optimum compression ratio of 21.  相似文献   

16.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

17.
ABSTRACT

The objective of this study is to investigate the effect of compression ratio on combustion characteristics of diesel engine with waste cooking oils methyl ester–diesel blends as fuel. The DI engine fuelled with Waste Cooking Rice Bran Methyl Ester (WCRBME) and Waste Cooking Cotton Seed Oil Methyl Ester (WCCSME) prepared by the transesterification process was investigated for its combustion and then compared with petroleum-based diesel fuel (PBDF). Experiments were conducted at a constant speed of 1500?rpm and maintained at a full-load condition for the compression ratio of 17:1, 18:1 and 19:1 and blending ratios B20, B40, B60 and B80.The fuel properties were strictly measured as per ASTM testing methods and these observed properties are verified to be well within the limits of ASTM D 6751 biodiesel standards. The combustion characteristics of heat release rate and combustion pressure of WCRBME & WCCSME were found closer to diesel.  相似文献   

18.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

19.
The energy consumption is increasing rapidly due to population growth, improved living standards and industrialisation. A significant amount of fossil fuels is consumed by the transportation sector, which causes the fast depletion of fossil fuels and environmental pollution. These problems can be overcome by using Biodiesel. This research work aims to reduce the NOx emission in diesel engines. The literature survey reveals that the use of a fuel additive reduces the emissions by oxygenating the fuel. Among oxygenates, ether proves to behave better than alcohols. Hence, for this present work, two different types of ethers were selected which were not used in earlier occasions. DGME (Diethylene Glycol Monomethyl Ether) and DGMB (Diethylene Glycol Monobutyl Ether) are the two additives selected from the ether group and used as additives with palm oil methyl ester (POME) biodiesel in various proportions and tested in a direct injection compression ignition engine which reduced the emissions. To start with, the engine was run with diesel and subsequently with biodiesel and with the additives. The performance tests were carried out in a single-cylinder, four-stroke, water-cooled engine with and without exhaust gas recirculation (EGR). This engine is coupled with eddy current dynamometer. The use of biodiesel in conventional diesel engines results in substantial reduction in emission of carbon monoxide, particulates and unburned hydrocarbons, but increases NOx emission. This review focuses on reduction of NOx emission. Combustion and performance analysis of the engine have also been evaluated.  相似文献   

20.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil.The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NOx and NO2 emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase.The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号