首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuel crisis and environmental concerns have led researchers to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests and oil-bearing biomass materials. Vegetable oils have energy content comparable to that of diesel fuel. Straight vegetable oils posed several operational problems and durability problems when subjected to long-term usage in compression ignition engine. These problems are attributed to higher viscosity and lower volatility. In this study, performance and emission parameters of a diesel engine operating on neem oil and its blends of 5, 10, 15 and 20?vol% with ethanol, 1-propanol, 1-butanol and 1-pentanol are evaluated and compared with diesel operation. The results indicate that the brake thermal efficiency is improved with the use of neem oil–alcohol blends with respect to those of neat neem oil. The smoke intensity, CO and HC emissions with neem oil–alcohol blends are observed to be lower with respect to those of neat neem oil at higher loads. The NO x emission is very slightly reduced with the use of neem oil–alcohol blends except for the neem oil–ethanol blend compared with that of neat neem oil.  相似文献   

2.
ABSTRACT

The main emphasis of this work is to explore the biodiesel obtained from waste cooking oil and its utilisation in CI engine blended with ethanol and conventional diesel. Waste cooking oil methyl esters (WCOME) was prepared by transesterification with a heterogeneous catalyst such as CaO. Diesel and WCOME blends of five different proportions with 5% of ethanol uniformly added to them were used as a fuel in a variable compression ratio, constant speed, compression ignition engine. The performance, emission and combustion characteristics of the engine at part and full load conditions were compared with that of neat diesel, varying the compression ratio from 18 to 22. From the experimental results, the blend comprising 20% waste cooking oil, 5% ethanol and 75% mineral diesel showed ameliorated performance and emission characteristics, compared with all the other fuel blends at an optimum compression ratio of 21.  相似文献   

3.
The effect of diesel, ethanol, and diethyl ether (DEE) blends on performance, combustion, and emission of a 3.6?kW single-cylinder compression ignition engine is investigated in this paper. The experiments were conducted using different percentages of ethanol and DEE in diesel. The fuel samples selected for experimentation included neat diesel fuel, 5% DEE (D95DEE5), 10% DEE (D90DEE10), 5% DEE with 5% ethanol (D90DEE5E5), 5% DEE with 10% ethanol (D85DEE5E10), 10% DEE with 5% ethanol (D85DEE10E5), and 10% DEE with 10% ethanol (D80DEE10E10). It was found that 5% DEE can improve the brake thermal efficiency (ηbth), but the same decreased with 10% DEE in the blend. However, ethanol addition to both the blends produced an appreciable increase in ηbth of the engine. The diesel–DEE–ethanol blends were also more efficient in reducing emissions of carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbon (HC), and particulate matter (PM). Among all the blends tested in this study, it was found that the D80DEE10E10 blend can produce optimum performance-emission characteristics with improved thermal efficiency and reduced emission of NOx, CO, HC, and PM.  相似文献   

4.
In this paper, bio-diesel was prepared from watermelon seed oil by using transesterification processes. The performance, emission and combustion characteristics of the various bio-diesel and diesel blends (B20–B80 and B100) are compared with those of the diesel. The experimental result indicates that owing to a lower heating value of bio-diesel, the brake-specific fuel consumption increased and the brake thermal efficiency decreased. However, bio-diesel and its blends reduced carbon monoxide and hydrocarbon, while the oxides of nitrogen and smoke slightly increased. The combustion analysis proved that increasing bio-diesel blend ratio decreases the cylinder pressure and heat release rate when compared with base diesel.  相似文献   

5.
Recently investigations were carried out on the utilisation of light fraction pyrolysis oil (LFPO) in diesel engine, which was obtained from a tyre recycling plant. The 40LFPO blend, which comprised 40% LFPO and 60% diesel composition gave better performance and lower emissions than the blends containing 20LFPO, 60LFPO and 80LFPO. The ignition delays of the blends were longer than that of diesel fuel, because of their lower cetane numbers. The aim of this investigation was to study effect the adding small quantities of Diethyl ether (DEE) whose cetane number is 125, to 40LFPO on the engine behaviour in terms of performance parameters and exhaust emissions. The percentage of DEE was varied from 1% to 4% in steps of 1% on a volume basis. The results of the performance and emission parameters of the engine run on the 40LFPO-DEE blends were evaluated, compared with the diesel operation of the same engine and presented in this article.  相似文献   

6.
Being a fuel of different origin, the standard design parameters of a diesel engine may not be suitable for methyl ester of neem oil (MENO). So the engine parameters need to be optimised to suit the specific fuel properties. This experimental investigation is to find the effects of one of the engine parameters, that is, fuel injection pressure (FIP) jointly on the performance with regard to brake thermal efficiency (BTE), brake-specific energy consumption (BSEC), and emissions of carbon monoxide, carbon dioxide, hydrocarbon, nitrogen oxides, and smoke intensity with neat MENO as fuel. Comparison of performance and emission test were done for different values of IP to find the best possible IP for the optimum performance and emission. The optimum FIP was found to be 240?bar. It is found that the increase in IP increases the BTE and reduces the BSEC while having lower emissions.  相似文献   

7.
Motorisation and fast depletion of fossil fuel reserves and issues like global warming have led the researchers all over to look for substitute fuels. Biodiesel resulting from vegetable oil is being used around the globe to lessen air pollution and reduce the necessity of diesel fuel. The current study covers the various aspects of N20 neem biodiesel with increased fuel injection pressure. The blends of N20 were tested with increased fuel injection pressure to examine the characteristics such as brake thermal efficiency, fuel consumption, emission and combustion parameters. Experimental results indicated that N20 with 240?bar has a closer performance to diesel, reduced exhaust emission and improved combustion parameters.  相似文献   

8.
The aim of our project is to experimentally access the practical applications of ethanol and blending it with some lubricating oils in a direct injection compression ignition engine. This replacement of conventional diesel with ethanol requires some of the properties of ethanol to be altered. In order to increase the lubricating property of ethanol, it is blended with some lubricating oils. Some of the preferred lubricating oils are methyl esters of Jatropha oil, Pongamia oil, etc. Ethanol is blended with these lubricating oils to reduce the corrosive property of ethanol. The different fuel blends [Pongamia–ethanol (50–50) and Jatropha–ethanol (50–50)] are used in the direct injection CI engine, the combustion characteristics are calculated and they are compared with diesel and a perfect blend is analysed. The engine combustion parameters such as peak pressure, heat release rate (HRR) and cumulative heat release rate were computed. The combustion analysis revealed that the early rate of pressure rise causes the cylinder pressure to rise early in the case of alternate fuels with a resulting lower rate of pressure rise and peak pressure. However, HRR and cumulative HRR show a maximum for Pongamia–ethanol (50–50) when compared with the neat diesel fuel.  相似文献   

9.
An artificial neural network (ANN) model is developed to predict the engine performance of fish oil biodiesel blended with diethyl ether. Engine performance and emission characteristics such as brake thermal efficiency, hydrocarbon, exhaust gas temperature, oxides of nitrogen (NOx), carbon monoxide (CO), smoke and carbon dioxide (CO2) were considered. Experimental investigations on single-cylinder, constant speed, direct injection diesel engine are carried out under variable load conditions. The performance and emission characteristics are measured using an exhaust gas analyser, smoke metre, piezoelectric pressure transducer and crank angle encoder for different fuel blends and engine load conditions. In this model, a back propagation algorithm is used to predict the performance. Computational results clearly demonstrated that the developed ANN models produced less deviations and exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.97–1 and mean relative error of 0–3.061% with experimental values. The root mean square errors were found to be low. The developed model produces the idealised results and it has been found to be useful for predicting the engine performance and emission characteristics with limited number of available data.  相似文献   

10.
Tyre pyrolysis oil (TPO) blend with diesel can be used as an alternate fuel. Tests have been carried out to analyse the energy and exergy characteristics of diesel engine fuelled by B10, B20 and B30 blend of TPO with diesel fuel. TPO was derived from waste automobile tyres through vacuum pyrolysis process (batch type). In this paper, the brake thermal efficiencies of TPO of different blends (10%, 20% and 30%) are compared with the pure diesel and discussed. Further, exergy and energy values of TPO–diesel with different blends are analysed.  相似文献   

11.
This paper investigates the combustion, performance and emission characteristics of a single-cylinder diesel engine using neat biodiesel (Pongamia methyl ester) with two different blends (10% and 15% diethyl ether [DEE]) at different load conditions. The measured values of brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO) and smoke were calculated and analysed and compared with diesel fuel. The results showed that a significant reduction in NO and smoke emissions for neat biodiesel with 15% DEE blend compared with neat biodiesel at full load conditions. The peak pressure and heat release rate were decreased, and maximum rate of pressure rise and ignition delay were also decreased with DEE blends at full load. On the whole, it is concluded that the biodiesel with 15% DEE blend showed better results with respect to efficiency and emissions point of view compared with biodiesel.  相似文献   

12.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

13.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

14.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

15.
Petroleum-based fuels is a finite resource that is rapidly depleting. Consequently, petroleum reserves are not sufficient enough to last many years. In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for direct injection (DI) diesel engines. The experimental work has been carried out to estimate the combustion characteristics of a single-cylinder, four-stroke, DI diesel engine fuelled with corn oil methyl ester (COME) and diesel blends. The COME was preheated to temperatures namely 50°C, 70°C and 90°C before it was supplied to the engine. The optimised preheated temperature of 70°C was chosen based on the higher brake thermal efficiency and lower specific fuel consumption. The performance, emission and combustion characteristics are evaluated by running the engine with COME and diesel blends at this preheated temperature. In this paper, the combustion characteristics are only discussed. The combustion characteristics such as ignition delay, maximum rate of pressure, heat release rate, cumulative heat release rate, mass fraction burned and combustion duration of COME methyl ester and diesel were evaluated and compared with neat diesel. The rate of pressure rise and maximum combustion pressure inside the cylinder were high for COME blends compared with neat diesel. The heat release rate of diesel is higher compared with COME blends. The ignition delay and combustion duration are decreased for COME blends compared with neat diesel. The cumulative heat release rate and mass fraction burnt of COME blends are higher than neat diesel.  相似文献   

16.
The present work predicts the performance parameters, namely brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak pressure, exhaust gas temperature and exhaust emissions of a single cylinder four-stroke diesel engine at different injection timings and engine load using blended mixture of polanga biodiesel by artificial neural network (ANN). The properties of biodiesel produced from polanga were measured based on ASTM standards. Using some of the experimental data for training, an ANN model was developed based on standard back-propagation algorithm for the engine. Multi-layer perception network was used for non-linear mapping between input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the developed ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.99946, 0.99968, 0.99988, 0.99967, 0.99899, 0.99941 and 0.99991 for the BSFC, BTE, peak pressure, exhaust gas temperature, NOx, smoke and unburned hydrocarbon emissions, respectively. The experimental results revealed that the blended fuel provides better engine performance and improved emission characteristics.  相似文献   

17.
Diesel engines have been the ‘primus motor’ of transportation in the world since a long time now. However, the depletion of fuel supplies, recent concerns over the environment and the ever-increasing fuel prices have made the search for an alternative fuel of paramount importance. A considerable amount of interest has been shown by researchers to evaluate different plant and vegetable oils as a replacement of diesel. Based on this background, an attempt to investigate Thyme oil as a substitute to diesel without any modifications in the engine was made. The experiment was conducted on a 1500?rpm, four-stroke, diesel engine with single cylinder which is water cooled. Cerium Oxide nano additive was added to the blends of thyme oil with diesel and its effects on the brake thermal efficiency, specific fuel consumption (SFC) and exhaust emissions were examined. The experimental results portrayed better values of brake thermal efficiency and low SFC with B10 (10 parts of oil with 90 parts of diesel) and B20 samples of the blends, while the B40 blend showed lower NOx emissions at all loads. The HC content was found to increase with the increasing quantity of thyme oil in the blends.  相似文献   

18.
Stringent emission regulations and health awareness about air pollution have led researchers to find alternative means of minimising emissions in diesel engines. In this article, the influence of oxygen enrichment is discussed to determine the effect on diesel engine performance, emission characteristics and combustion characteristics. Normal diesel and oxygen-enriched diesel are used in this experiment. The increase in oxygen concentration led to complete combustion, producing higher thermal efficiency and low harmful emissions. From the results, it is noted that oxygen-enriched diesel fuel showed reduction of CO, HC and smoke emissions, while NOx emission increased.

Abbreviations/Nomenclature DI: direct injection; NOx: oxides of nitrogen; O2: oxygen; HC: hydrocarbon; PM: particulate matters; CO: carbon monoxide; CO2: carbon dioxide  相似文献   


19.
ABSTRACT

In the recent times, the limitations on the exhaust emissions of the internal combustion engines are becoming increasingly rigorous due to environmental safety. Carbon monoxide, oxides of nitrogen, particulates and hydrocarbon are the prime noxious waste emitted by diesel engines. This experimental study involves the analysis of engine performance and emission characteristics of a single cylinder diesel engine with yttria- and ceria-stabilised zirconia coating on a cylinder liner and piston head. Varied dosing levels were added to diesel in both uncoated and coated engines. The experiment resulted in noticeable changes in the selected thermal barrier coating and dosing of cerium oxide additive nanoparticle in diesel. A surge of 2.1% in the brake thermal efficiency and downturn of 3% brake-specific fuel consumption when compared to standard diesel mode in the uncoated engine was discerned. Emission level of nitrogen oxide, carbon monoxide and hydrocarbon also underwent a considerable decline.  相似文献   

20.
ABSTRACT

This paper discusses the development of a B20 cottonseed oil blend for passenger vehicle with vanadium-based Selective Catalytic Reduction (SCR) technology addition on exhaust system. SCR is a progressive emissions governor technology organism that injects a liquid-Urea (also called aqueous urea, Ad Blue or Diesel Exhaust Fluid) through an injector nozzle into the exhaust manifold of diesel engine. The methyl ester of cottonseed oil blend was analysed in a single cylinder, 4-stroke, computerised water-cooled, diesel engine of 5.2?kW rated power for performance and emission characteristics with SCR. The results indicate that the emissions of the CI engine running on B20 blend with the catalytic convertor reduced NO x emission up to 76% with different quantity of dosing. However, it is noted that the brake thermal efficiency is reduced slightly by 2% for SCR due to the back pressure created by the SCR system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号