首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the attitude control of spacecraft in the presence of unknown mass moment of inertia matrix, external disturbances, actuator failures, and control input constraints. A robust adaptive controller is proposed with the utilization of fuzzy logic and backstepping techniques. The unit quaternion is employed to describe the attitude of spacecraft for global representation without singularities. The system uncertainty is estimated by introducing a fuzzy logic system. The adaptive mechanism has only two parameters to be adapted on-line because the adaptive law of the proposed controller is derived from the norm of the weight matrix. The stability of the closed-loop system is guaranteed by Lyapunov direct approach. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of parametric uncertainties, external disturbances, actuator failures, and control input constraints.  相似文献   

2.
针对多变量、不稳定的近空间飞行器姿态系统,在系统存在参数不确定和外部干扰的情况下,并考虑执行器动态和输入受限,提出一种鲁棒可重构跟踪控制策略.首先,利用二阶滑模干扰观测器分别重构姿态、角速率回路的复合干扰;其次,采用鲁棒二阶滑模积分滤波器的反推(backstepping)方法避免了控制器设计中微分项膨胀问题,利用鲁棒项抵消重构误差对系统的影响,以实现姿态控制器设计.然后,在考虑执行器动态、输入受限及舵面卡死故障下,给出一种线性矩阵不等式的在线优化舵面分配算法,以实现飞行器的姿态角渐近跟踪期望的制导指令.最后,仿真结果表明所提出的方法具有良好的跟踪控制性能.  相似文献   

3.
执行机构部分失效的挠性航天器多界依赖容错控制   总被引:1,自引:0,他引:1  
针对挠性航天器在轨运行时受到的外部干扰,输入时滞以及执行机构部分失效问题,本文提出了一种基于不确定参数的鲁棒H_∞容错控制方法.首先,将执行机构部分失效容错控制问题转化为不确定参数的鲁棒控制问题.然后,设计了一个新型的多界依赖状态反馈鲁棒H_∞控制算法.此算法不仅依赖时滞积分不等式分割参数和时滞界信息,还依赖部分失效因子.因此,本文设计的控制器能同时实现对输入时滞的敏感,对部分失效故障的容错及对外部干扰的抑制.最后,通过一系列的仿真验证本文方法的有效性.  相似文献   

4.
This paper addresses the control problem of adaptive backstepping control for a class of nonlinear active suspension systems considering the model uncertainties and actuator input delays and presents a novel adaptive backstepping‐based controller design method. Based on the established nonlinear active suspension model, a projector operator–based adaptive control law is first developed to estimate the uncertain sprung‐mass online, and then the desirable controller design and stability analysis are conducted by combining backstepping technique and Lyapunov stability theory, which can not only deal with the actuator input delay but also achieve better dynamics performances and safety constraints requirements of the closed‐loop control system. Furthermore, the relationship between the input delay and the state variables of this vehicle suspension system is derived to present a simple and effective method of calculating the critical input delay. Finally, a numerical simulation investigation is provided to illustrate the effectiveness of the proposed controller.  相似文献   

5.
This article proposes fault‐tolerant finite‐time attitude tracking control of a rigid spacecraft actuated by four reaction wheels without unwinding problem in the presence of external disturbances, uncertain inertia parameter, and actuator faults. First, a novel antiunwinding finite‐time attitude tracking control law is derived with a designed control signal which works within a known actuator‐magnitude constraint using a continuous nonsingular fast terminal sliding mode (NFTSM) concept. Second, a finite‐time disturbance observer (FTDO) is introduced to estimate a lumped disturbance due to external disturbances, uncertain inertia parameter, actuator faults, and input saturation. Third, a composite controller is developed which consists of a feedback control based on the continuous NFTSM method and compensation term based on the FTDO. The global finite‐time stability is proved using Lyapunov stability theory. Moreover, the singularity and unwinding phenomenon are avoided. Simulation results are conducted under actuator constraints in the presence of external disturbances, inertia uncertainty, and actuator faults and results are illustrated to show the effectiveness of the proposed method. In addition, to show the superiority of the proposed control method over the recently reported control methods, comparative analysis is also presented.  相似文献   

6.
杨青运  陈谋 《控制理论与应用》2016,33(11):1449-1456
针对近空间飞行器姿态控制中出现的执行器故障,输入饱和与外部干扰等问题,设计了一种基于二阶滑模干扰观测器和辅助系统的鲁棒容错跟踪控制方法.首先,将系统不确定,外部扰动和执行器故障作为复合干扰,设计super-twisting二阶滑模干扰观测器对其进行估计.然后为解决输入饱和问题构造了辅助分析系统,并借助backstepping方法,设计姿态容错跟踪控制器.利用Lyapunov方法,严格证明了所有闭环系统信号的收敛性.最后将所设计的控制方法应用于近空间飞行器姿态控制中,仿真结果验证了该控制方法的有效性.  相似文献   

7.
This paper aims to develop a robust decomposed system control (RDSC) strategy under input constraints for an electro-mechanical linear actuator (EMLA) facing model uncertainty and external disturbances. At first, a state-space model of a complex multi-stage gearbox EMLA system, driven by a permanent magnet synchronous motor (PMSM), is developed, and the non-ideal characteristics of the ball screw are presented through the model. The result is a four-order nonlinear strict-feedback form (NSFF) system decomposed into three subsystems. As the paper's main result, a novel RDSC strategy with uniform exponential stability for controlling subsystem states is presented. This developed controller avoids the "explosion of complexity" problem associated with backstepping by treating the time derivative of the virtual control input as an uncertain system term. The proposed method, despite assuming load disturbances and input constraints with arbitrary bounds, offers a straightforward control approach for a broader range of applications. Further, the controller's performance is evaluated by simulating two distinct duty cycles, each representing different levels of demand on the actuator facing load disturbances near the rated motor performance.  相似文献   

8.
A novel three‐dimensional fault‐tolerant control guidance law is proposed for interception of maneuvering targets in the presence of external disturbances, actuator failures, and control input constraints. The input‐to‐state stability (ISS) method is introduced to design the fault‐tolerant control guidance law to guarantee robust tracking of a maneuvering target. Then, a saturated fault‐tolerant control guidance law is constructed using a modified saturation function to ensure the resulting control signal will never incur input constraints, and the convergence to a small neighborhood of origin is ensured in theory. Simulation results show that the presented approach is effective in achieving a successful interception against target maneuvers, external disturbances, actuator failures, and control input constraints.  相似文献   

9.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the design of a robust adaptive tracking control scheme for a class of variable stiffness actuators (VSAs) based on the lever mechanisms. For these VSAs based on the lever mechanisms, the AwAS‐II developed at Italian Institute of Technology (IIT) is chosen as the study object, and it is an enhanced version of the original realization AwAS (actuator with adjustable stiffness). Firstly, for the dynamic model of the AwAS‐II system in the presence of parametric uncertainties, unknown bounded friction torques, unknown bounded external disturbance and input saturation constraints, by using the coordinate transformations and the static state feedback linearization, the state space model of the AwAS‐II system with composite disturbances and input saturation constraints is transformed into an uncertain multiple‐input multiple‐output (MIMO) linear system with lumped disturbances and input saturation constraints. Subsequently, a combination of the feedback linearization, disturbance observer, sliding mode control and adaptive input saturation compensation law is adopted for the design of the robust tracking controller that simultaneously regulates the position and stiffness of the AwAS‐II system. Under the proposed controller, the semi‐global uniformly ultimately bounded stability of the closed‐loop system has been proved via Lyapunov stability analysis. Simulation results illustrate the effectiveness and the robustness of the proposed robust adaptive tracking control scheme.  相似文献   

11.
本文研究了三轴稳定充液航天器控制系统中同时存在测量不确定,外部未知干扰,参数不确定和控制输入饱和的鲁棒自适应姿态机动控制问题.建模过程中,将晃动液体燃料等效为粘性球摆模型,采用动量矩守恒定律推导出充液航天器的耦合动力学方程.提出了一种将反步控制方法结合非线性干扰观测器和指令滤波器的鲁棒饱和输出反馈复合控制策略,该控制策略不仅能继承反步控制方法的优点,而且通过引入非线性干扰观测器实现对未知外部干扰,参数不确定以及测量不确定的补偿,还能利用指令滤波器处理控制力矩输入饱和的不利影响.基于Lyapunov稳定性分析方法证明了系统状态变量的渐进稳定性.仿真结果验证了提出控制方法的有效性和鲁棒性.  相似文献   

12.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

13.

In this study, an adaptive neural backstepping control scheme is proposed for a class of nonstrict-feedback time-delay systems with input saturation, full-state constraints and unknown disturbances. A structural property of radial basis function neural network is presented to deal with the design from the nonstrict-feedback formation. This method does not require the parameter separation technique and its assumption. With the help of the Lyapunov-Krasovskii functionals and Young’s inequalities, the effects of time delays are compensated, and the unknown disturbances are eliminated in the design process. The barrier Lyapunov function (BLF) is applied to arrest the violation of the full-state constraints. To overcome the problem of input saturation nonlinearity, the smooth nonaffme function of the control input signal is adopted to approach the input saturation function. Moreover, an adaptive backstepping neural control strategy is proposed. The proposed adaptive neural controller ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB). Furthermore, the tracking error can converge to a small neighborhood of the origin. The simulation result shows the effectiveness of this method.

  相似文献   

14.
针对存在模型不确定性、外界干扰力矩和执行器性能受限等约束条件下的刚体航天器姿态跟踪控制问题进行研究,并基于滑模控制、反步控制、自适应控制、辅助系统和动态面控制等方法设计相应的鲁棒姿态跟踪控制算法.利用自适应控制实现了对具有多项式形式上界函数的系统未知不确定性进行在线估计和补偿;通过建立描述执行器动态特性的低通滤波模型,并结合辅助系统方法,以确保执行器输出控制力矩的幅值及其变化率均满足一定的饱和约束;通过引入动态面控制法,避免期望虚拟控制信号的一阶导数项直接出现在控制器中,简化了闭环姿态跟踪控制器的设计形式.最后,通过数值仿真验证了所提出控制算法的有效性和可行性.  相似文献   

15.
基于反步法与动态控制分配的航天器姿态机动控制   总被引:1,自引:0,他引:1  
针对存在未知转动惯量与外部干扰的航天器姿态机动控制问题,提出了一类基于反步法的鲁棒自适应控制器,并利用Lyapunov方法分析了系统的稳定性;考虑到作为执行机构的反作用飞轮存在冗余性,进一步提出了一种基于约束最优二次规划的动态控制分配算法来实现指令到期望飞轮的指令分配,克服传统伪逆法难以考虑飞轮动态特性、最大力矩等物理约束,并能有效的抑制姿态敏感器的测量噪声和测量异常值,实现控制力矩的平稳性.最后,将本文提出的控制方案应用于某型轮控刚体航天器的姿态机动任务中,仿真结果验证了本文提出方法的可行性、有效性.  相似文献   

16.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

17.
In this article, considering actuator constraints and possible failures, an adaptive compensation control scheme is developed to realize tracking control for a class of uncertain nonlinear systems with quantized inputs. A new variable is generated to evaluate the effect of actuator saturation and is used in the process of controller design to compensate for the influence of actuator saturation constraint. Moreover, the controller is able to show certain accommodation capability to tolerate possible actuator failures and input quantization error via integrating parameter update process of unknown fault constants into adaption of parametric uncertainties under the backstepping procedure. Specifically, actuator saturation effect and possible actuator failures as well as input quantization error can be dealt with uniformly under the framework of the proposed scheme and the control system has certain robustness to external disturbances. It is proved that all the signals of the closed‐loop system are ensured to be bounded and the tracking error is enabled to converge toward a compact set, which is adjustable by tuning design parameters. Finally, experiments are carried out on an active suspension plant to illustrate the effectiveness of the proposed control scheme.  相似文献   

18.
沈智鹏  曹晓明 《控制与决策》2019,34(7):1401-1408
针对输入受限条件下四旋翼飞行器的轨迹跟踪控制问题,考虑系统存在模型动态不确定和未知外界干扰的情况,提出一种模糊自适应动态面轨迹跟踪控制方法.该方法设计干扰观测器估计位置模型中复合扰动项,利用模糊系统逼近姿态模型中不确定项和外界干扰,并引入双曲正切函数和辅助系统处理输入受限问题,结合反演法和动态面技术设计轨迹跟踪控制器,以降低控制算法的复杂性,最后选取李雅普诺夫函数证明闭环系统所有信号一致最终有界.应用大疆M100飞行器模型进行仿真验证,结果表明所设计的控制器能够有效处理模型动态不确定和未知外界干扰问题,避免飞行器工作过程中因输入饱和导致执行器失效现象,精确地完成轨迹跟踪控制任务.  相似文献   

19.
This paper investigates the attitude stabilization problem of spacecraft subject to external disturbances and actuator saturation. A novel attitude control scheme is technically proposed by incorporating the Nussbaum gain technique into backstepping design. The key idea behind this is to introduce a special Nussbaum‐type function in order to compensate for the time‐varying nonlinear terms arising from input saturation. By exploiting the dynamic surface control technique, the problem of “explosion of terms” inherent in traditional backstepping designs is effectively eliminated and the computational burden is significantly reduced. Additionally, based on the selected Nussbaum‐type function, a constructive analysis methodology is presented, which plays an important role in analyzing the stability properties of the closed‐loop system. It is then proved that the proposed control scheme can guarantee the boundedness of all closed‐loop signals. Furthermore, the unwinding phenomenon is given a simple and effective remedy by resorting to suitable choices of the attitude error variable and the virtual control law. Finally, simulation experiments are carried out to assess the effectiveness and demonstrate the advantages of the proposed control scheme.  相似文献   

20.
This paper tackles the problem of integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property. Due to the system natural couplings, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment and unknown mass property are taken into account. By solving an equivalent designated trajectory tracking problem via backstepping philosophy, a robust adaptive integrated finite-time control scheme is proposed to enable the spacecraft track command position and attitude in a pre-determined time, despite of external disturbance, unknown mass property and thruster misalignment. The finite-time closed-loop stability is guaranteed within the Lyapunov framework. Two scenario numerical simulations demonstrate the effect of the designed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号