首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于张量空间中的均值漂移聚类的极化SAR图像分割   总被引:1,自引:1,他引:0  
提出了一种基于均值漂移(Mean Shift, MS)聚类的全极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)图像无监督分割算法. 已有的工作在将MS算法应用于全PolSAR图像分割时, 仅使用每个像素点的极化总功率值作为该像素点的特征值, 没有充分利用极化协方差矩阵或者相干矩阵所包含的完整的极化散射信息. 但是如果直接利用每个像素点的极化协方差矩阵作为特征向量, 则这些特征向量构成的空间不再是一个欧氏空间, 而原始的MS算法是定义在欧氏空间中的. 因此, 本文首先将每一个像素点的厄尔米特正定极化协方差矩阵也称为一个张量, 而且使用黎曼流形来描述该张量空间. 然后, 原始的MS算法被扩展到该张量空间中. 直接扩展得到的算法每一步具有明确的含义, 但是运算复杂度较高. 所以本文又进一步对该算法进行了简化, 从而得到了一个实用的分割算法. 通过使用真实的全PolSAR数据以及仿真数据进行实验, 结果验证了新方法的有效性.  相似文献   

2.
This study proposes a new four-component algorithm for land use and land cover (LULC) classification using RADARSAT-2 polarimetric SAR (PolSAR) data. These four components are polarimetric decomposition, PolSAR interferometry, object-oriented image analysis, and decision tree algorithms. First, polarimetric decomposition can be used to support the classification of PolSAR data. It is aimed at extracting polarimetric parameters related to the physical scattering mechanisms of the observed objects. Second, PolSAR interferometry is used to extract polarimetric interferometric information to support LULC classification. Third, the main purposes of object-oriented image analysis are delineating image objects, as well as extracting various textural and spatial features from image objects to improve classification accuracy. Finally, a decision tree algorithm provides an efficient way to select features and implement classification. A comparison between the proposed method and the Wishart supervised classification which is based on the coherency matrix was made to test the performance of the proposed method. The overall accuracy of the proposed method was 86.64%, whereas that of the Wishart supervised classification was 69.66%. The kappa value of the proposed method was 0.84, much higher than that of the Wishart supervised classification, which exhibited a kappa value of 0.65. The results indicate that the proposed method exhibits much better performance than the Wishart supervised classification for LULC classification. Further investigation was carried out on the respective contribution of the four components to LULC classification using RADARSAT-2 PolSAR data, and it indicates that all the four components have important contribution to the classification. Polarimetric information has significant implications for identifying different vegetation types and distinguishing between vegetation and urban/built-up. The polarimetric interferometric information extracted from repeat-pass RADARSAT-2 images is important in reducing the confusion between urban/built-up and vegetation and that between barren/sparsely vegetated land and vegetation. Object-oriented image analysis is very helpful in reducing the effect of speckle in PolSAR images by implementing classification based on image objects, and the textural information extracted from image objects is helpful in distinguishing between water and lawn. The decision tree algorithm can achieve higher classification accuracy than the nearest neighbor classification implemented using Definiens Developer 7.0, and the accuracy of the decision tree algorithm is similar with that of the support vector classification which is implemented based on the features selected using genetic algorithms. Compared with the nearest neighbor and support vector classification, the decision tree algorithm is more efficient to select features and implement classification. Furthermore, the decision tree algorithm can provide clear classification rules that can be easily interpreted based on the physical meaning of the features used in the classification. This can provide physical insight for LULC classification using PolSAR data.  相似文献   

3.
Ship detection can be significantly improved by using polarimetric synthetic aperture radar (PolSAR) imaging. In this article, we propose a PolSAR ship detection method based on the use of multi-featured polarization by using the visual attention model. Three polarimetric features, namely, the polarimetric contrast, the polarimetric scattering, and the polarimetric phase, are selected as the early features, and the pros and cons for each feature are discussed. The visual attention model is a framework that rapidly combines multiple features into one feature, which is improved according to the relationship of the selected features. Validation of the method is performed by analysing the multi-resolution process, the improved multi-feature process, the threshold strategy, the sensibility to the incidence angle of the sensors, and the performance of moving ship detection, which are analysed by Radarsat-2 fine quad images with automatic identification system data. Additionally, the false alarm/non-detection analysis and the computation cost analysis are also considered. In contrast to other ship detectors, the proposed detector is more effective and robust.  相似文献   

4.
Fully polarimetric synthetic aperture radar (PolSAR) Earth Observations showed great potential for mapping and monitoring agro-environmental systems. Numerous polarimetric features can be extracted from these complex observations which may lead to improve accuracy of land-cover classification and object characterization. This article employed two well-known decision tree ensembles, i.e. bagged tree (BT) and random forest (RF), for land-cover mapping from PolSAR imagery. Moreover, two fast modified decision tree ensembles were proposed in this article, namely balanced filter-based forest (BFF) and cost-sensitive filter-based forest (CFF). These algorithms, designed based on the idea of RF, use a fast filter feature selection algorithms and two extended majority voting. They are also able to embed some solutions of imbalanced data problem into their structures. Three different PolSAR datasets, with imbalanced data, were used for evaluating efficiency of the proposed algorithms. The results indicated that all the tree ensembles have higher efficiency and reliability than the individual DT. Moreover, both proposed tree ensembles obtained higher mean overall accuracy (0.5–14% higher), producer’s accuracy (0.5–10% higher), and user’s accuracy (0.5–9% higher) than the classical tree ensembles, i.e. BT and RF. They were also much faster (e.g. 2–10 times) and more stable than their competitors for classification of these three datasets. In addition, unlike BT and RF, which obtained higher accuracy in large ensembles (i.e. the high number of DT), BFF and CFF can also be more efficient and reliable in smaller ensembles. Furthermore, the extended majority voting techniques could outperform the classical majority voting for decision fusion.  相似文献   

5.
The polarimetric synthetic aperture radar (PolSAR) usually has to be calibrated before practical application, so as to compensate for polarimetric distortion. The varying platform attitude is one of the factors causing distortion but has rarely been considered in existing polarimetric calibration algorithms. With the resolution of PolSAR systems improving and the synthetic aperture time prolonging, this factor cannot simply be ignored. The varying attitude will distort the polarimetric information by rotating the polarimetric orientation angle, and such distortion changes with azimuth time. In this article, we modified the conventional polarimetric system model to take account of the time-variant impact of the unstable platform attitude. A calibration algorithm is proposed to compensate the time-variant attitude impact on the raw return data. The proposed calibration algorithm is tested on the data collected by Institute of Electronics, Chinese Academy of Sciences P-band PolSAR system. Results show that it can achieve better performance by reducing crosstalk error than two conventional methods.  相似文献   

6.
This paper proposes a new algorithm, for polarimetric synthetic aperture radar (PolSAR) classification, based on a stacked auto-encoder and scattering energy. Previous approaches to PolSAR classification predominantly consider only the single pixel of distribution of the polarimetric data and scattering characteristics, and ignore other kinds of image features like the relationship of the local pixels. Besides, because of the complexities of PolSAR data, it is difficult to compute the derivatives that are needed for back-propagation in deep-learning classifiers. To overcome these difficulties, we propose a new approach that combines the scattering power and stacks sparse auto-encoder (Scattering SSAE) for PolSAR classification. Firstly, orientation compensation is used to compensate the polarization orientation angle, reducing the impact of polarimetric angle noise. Secondly, Freeman-Durden decomposition is adopted to extract three basic scattering powers: surface, double bounce and volume. Each PolSAR image pixel is transformed into these scattering powers, yielding a new kind of feature from the PolSAR data. Finally, using the three kinds of scattering power as inputs, we combine local spatial information using a patch-based approach, and use a deep learning architecture to achieve classification. We compare our method against several other state-of-the-art methods using ground-truthed test-data, and show that the Scattering SSAE method achieves higher accuracy than other methods on most categories.  相似文献   

7.
An approach of weighted Wishart distance learning, shorted for W2-based distance learning, is proposed for polarimetric synthetic aperture radar (PolSAR) image classification. It aims to adjust the Wishart distance by enhancing discrimination as well as exploiting spatial information. The proposed distance learning keeps samples within the same category close and separates samples from the different classes far apart. It is effectively implemented by solving a linear programming. Input of W2-based distance learning is called weighted Wishart feature, which is designed specifically for PolSAR data to describe the Wishart distribution, achieve regional consistency, and reduce speckle noise. Weight is calculated according to an adaptive window, where homogeneous samples are derived based on a connected region and extracted edge information. With this feature, W2-based distance learning is a whole scheme to adjust the Wishart distance. Furthermore, our experiments with benchmark data sets suggest that the proposed scheme provides both improved performance in terms of visual effect and classification accuracy. The achieved overall accuracy is better by more than 7% compared to other state-of-art methods.  相似文献   

8.
Combining optical and polarimetric synthetic aperture radar (PolSAR) earth observations offers a complementary data set with a significant number of spectral, textural, and polarimetric features for crop mapping and monitoring. Moreover, a temporal combination of both sources of information may lead to obtaining more reliable results compared to the use of single-time observations. In this paper, an operational framework based on the stacked generalization of random forest (RF), which efficiently employed bi-temporal observations of optical and radar data, was proposed for crop mapping. In the first step, various spectral, vegetation index, textural, and polarimetric features were extracted from both data sources and placed into several groups. Each group was classified separately using a single RF classifier. Then, several additional classification tasks were accomplished by another RF classifier. The earth observations used in this paper were collected by RapidEye satellites and the Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system over an agricultural region near Winnipeg, Manitoba, Canada. The results confirmed that the proposed methodology was able to provide a higher overall accuracy and kappa coefficient than traditional stacking method, and also than all the individual RFs using each group. These accuracy metrics were also better than those of the RFs using the stacked features. Moreover, only the proposed methodology could achieve standard accuracy (F-score ≥85%) for all crop types in the study area. The visual comparison also demonstrated that the crop maps produced by the proposed methodology had more homogeneous, uniform appearances. Moreover, the mixed pixels of crop types, which abundantly existed in the traditional stacking and individual RFs? maps, were significantly eliminated.  相似文献   

9.
we present a novel polarimetric synthetic aperture radar (PolSAR) image compression scheme. PolSAR data contains lots of similar redundancies in single-channel and massively correlation between polarimetric channels. So these features make it difficult to represent PolSAR data efficiently. In this paper, discrete cosine transform (DCT) is adopted to remove redundancies between polarimetric channels, simple but quite efficient in improving compressibility. Sparse K-singular value decomposition (K-SVD) dictionary learning algorithm is utilized to remove redundancies within each channel image. Double sparsity scheme will be able to achieve fast convergence and low representation error by using a small number of sparsity dictionary elements, which is beneficial for the task of PolSAR image compression. Experimental results demonstrate that both numerical evaluation indicators and visual effect of reconstructed images outperform other methods, such as SPIHT, JPEG2000, and offline method.  相似文献   

10.
针对多极化合成孔径雷达影像地物分类特征表征性较弱及全卷积网络分类精度较低的问题,文中提出结合编码-解码网络(E-D-Net)和条件随机场(CRF)的全极化合成孔径雷达(SAR)土地覆盖分类算法.首先,利用Freeman分解和Pauli分解建模全极化SAR影像,提取各分解对应的散射特征.再借鉴语义分割网络模型的建模思想和多尺度卷积单元构建对称网络模型,将多尺度非对称卷积单元嵌入中层,设计E-D-Net网络模型.通过E-D-Net网络模型对PolSAR影像Freeman分解散射特征进行多层自主学习,获得初始分类结果.最后,利用全连接CRF结合Pauli相干分解伪彩色图信息,对初始分类结果再进行降噪和平滑优化,得到最终分类结果.在两地区PolSAR影像上的实验验证文中算法的有效性和可行性.  相似文献   

11.
The polarimetric synthetic aperture radar (PolSAR) is becoming more and more popular in remote-sensing research areas. However, due to system limitations, such as bandwidth of the signal and the physical dimension of antennas, the resolution of PolSAR images cannot be compared with those of optical remote-sensing images. Super-resolution processing of PolSAR images is usually desired for PolSAR image applications, such as image interpretation and target detection. Usually, in a PolSAR image, each resolution contains several different scattering mechanisms. If these mechanisms can be allocated to different parts within one resolution cell, details of the images can be enhanced, which that means the resolution of the images is improved. In this article, a novel super-resolution algorithm for PolSAR images is proposed, in which polarimetric target decomposition and polarimetric spatial correlation are both taken into consideration. The super-resolution method, based on polarimetric spatial correlation (SRPSC), can make full use of the polarimetric spatial correlation to allocate different scattering mechanisms of PolSAR images. The advantage of SRPSC is that the phase information can be preserved in the processed PolSAR images. The proposed methods are demonstrated with the German Aerospace Center (DLR) Experimental SAR (E-SAR) L-band full polarized images of the Oberpfaffenhofen Test Site Area in Germany, obtained on 30 September 2000. The experimental results of the SRPSC confirms the effectiveness of the proposed methods.1  相似文献   

12.
The ability of synthetic aperture radar (SAR) C-band microwave energy to penetrate within forest vegetation makes it possible to extract information on crown components, which in turn gives a better approximation of relative canopy density than optical data-derived canopy density. Many studies have been reported to estimate forest biomass from SAR data, but the scope of C-band SAR in characterizing forest canopy density has not been adequately understood with polarimetric techniques. Polarimetric classification is one of the most significant applications of polarimetric SAR in remote sensing. The objective of the present study was to evaluate the feasibility of different polarimetric SAR data decomposition methods in forest canopy density classification using C-band SAR data. Landsat (Land Satellite) 5 TM (Thematic Mapper) data of the same area has been used as optical data to compare the classification result. RADARSAT (Radar Satellite)-2 image with fine quad-pol obtained on 27 October 2011 over tropical dry forests of Madhav National Park, India, was used for the analysis of full polarimetric data. Six decomposition methods were selected based on incoherent decomposition for generating input images for classification, i.e. Huynen, Freeman and Durden, Yamaguchi, Cloude, Van zyl, and H/A/α. The performance of each decomposition output in relation to each land cover unit present in the study area was assessed using a support vector machine (SVM) classifier. Results show that Yamaguchi 4-component decomposition (overall accuracy 87.66% and kappa coefficient (κ) 0.86) gives better classification results, followed by Van Zyl decomposition (overall accuracy 87.20% and κ 0.85) and Freeman and Durden (overall accuracy 86.79% and κ 0.85) in forest canopy density classification. Both model-based decompositions (Freeman and Durden and Yamaguchi4) registered good classification accuracy. In eigenvector or eigenvalue decompositions, Van zyl registered the second highest accuracy among different decompositions. The experimental results obtained with polarimetric C-band SAR data over a tropical dry deciduous forest area imply that SAR data have significant potential for estimating canopy density in operational forestry. A better forest density classification result can be achieved within the forest mask (without other land cover classes). The limitations associated with optical data such as non-availability of cloud-free data and misclassification because of gregarious occurrence of bushy vegetation such as Lantana can be overcome by using C-band SAR data.  相似文献   

13.
Crop discrimination is a necessary step for most agricultural monitoring systems. Radar polarimetric responses from various crops strongly relate to the types and orientations of the local scatterers, which makes the discrimination still difficult using the polarimetric synthetic aperture radar (PolSAR) technique. This work provides a new approach by investigating and utilizing the characteristics of polarimetric correlation coefficients in the rotation domain along the radar line of sight. The theoretical basis lies in that polarimetric correlation coefficients can reflect the different responses and can be enhanced at different levels for various land-cover types with suitable rotation angles in the rotation domain. In this vein, a polarimetric correlation coefficient optimization framework is established and new polarimetric features are extracted therein. Demonstration with multi-frequency (P-, L-, and C-bands) airborne synthetic aperture radar (AIRSAR) PolSAR data over crop areas validates that polarimetric correlation coefficients are crop dependent and the optimized polarimetric correlation coefficient parameters can better discriminate them. Then, a crop discrimination scheme is proposed using the derived polarimetric features. A flow chart for the optimal discrimination feature set selection and determination is provided and is validated by the real data with seven typical crop types. All these crop types are successfully discriminated for the P- and L-band data, whereas only two types of crops are slightly overlapped in the feature space for the C-band data. Experimental studies demonstrate the efficiency and potential of the established methodology.  相似文献   

14.
目的 相干斑的存在严重影响了极化合成孔径雷达(PolSAR)的影像质量.对相干斑的抑制是使用SAR数据的必不可少的预处理程序.提出一种基于非局部加权的线性最小均方误差(LMMSE)滤波器的极化SAR滤波的方法.方法 该方法的主要过程是利用非局部均值的理论来获取LMMSE估计器中像素样本的权重.同时,在样本像素的选取过程中,利用待处理像素的极化散射特性和邻域块的异质性来排除不相似像素以加速算法,同时达到保持点目标和自适应调节块窗口大小的目的.结果 模拟影像和真实影像上进行的实验结果表明,采用这种方法滤波后影像的质量得到明显改善.和传统的LMMSE算法相比,无论是单视的影像还是多视的影像,本文方法去噪结果的等效视数都高出8视以上;峰值信噪比也提升了5.8 dB.同时,去噪后影像分类的总体精度也达到了83%以上,该方法的运行效率也比非局部均值算法有了较大提升.结论 本文方法不仅能够有效抑制相干斑噪声,还能较好地保持边缘和细节信息以及极化散射特性.这将会为后续高效利用SAR数据提供保障.  相似文献   

15.
H/α-Wishart分类方法是目前常用且较为有效的极化SAR影像分类方法,但其分类精度还有待改善。研究一种基于遗传算法的极化SAR影像的分类方法,该方法根据极化SAR影像Cloude特征分解的特征值,采用H/α平面进行初分类,然后采用遗传算法迭代进行再次分类。针对遗传算法“早熟”和收敛速度慢的问题,结合H/α平面图对遗传算法的变异算子进行了改进,以利用极化散射机理缩小变异范围,改善算法收敛速度。采用NASA-JPL实验室的极化SAR数据以及中国电子科技集团38研究X波段原型样机的高分辨率极化SAR数据进行实验,结果表明:该方法极化SAR影像分类精度优于H/α-Wishart分类方法。  相似文献   

16.
合成孔径雷达(Synthetic aperture radar,SAR)是一种有效的地球遥感技术,对观测区域进行全天时、全天候的高分辨率大范围成像,在军事侦察、环境监测和地质测绘等领域有着十分广泛的应用。随着雷达技术和地球科学的发展,人们期望能够获取更多的目标特性,传统的单极化SAR已经难以满足越来越多元化的实际应用需求。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)基于多个极化通道获取目标不同极化状态下的散射特性丰富了SAR图像的信息量,拓展了SAR的应用领域。从极化数据中准确地解译目标的物理特性是PolSAR应用的重要前提。本文对PolSAR的研究进展进行了总结,重点介绍了极化目标分解算法,给出了高分辨率PolSAR实测数据处理结果,并对未来研究方向进行了展望。  相似文献   

17.
目的 在极化合成孔径雷达(synthetic aperture radar,SAR)图像中常用直线检测进行机场跑道的识别,但是河流、道路等与机场跑道具有相似直线的地物容易对检测结果造成干扰,出现检测目标难定位、目标模糊、多虚警等问题。为此,本文设计了一种利用目标散射特性结合局部二值模式(local binary patterns,LBP)特征分类的极化SAR图像机场跑道区域检测方法,采用LBP特征对极化SAR图像进行有监督的分类来提取真实的机场区域。方法 首先利用异化散射功率对极化SAR图像进行阈值分割,然后通过形态学处理得到疑似机场跑道区域,同时构建机场跑道和非机场跑道两类训练样本,并提取、统计样本的LBP特征,形成直方图,得到特征向量训练支持向量机(support vector machine,SVM)二分类器,其中SVM二分类器采用了径向基函数(radial basis function,RBF)核函数;接着对疑似机场跑道区域构建LBP特征,送入SVM二分类器中分类,对机场跑道进行检测识别,最终得到真实的机场跑道区域。结果 利用UAVSAR(uninhabited aerial vehicle synthetic aperture radar)系统采集的7幅极化SAR图像数据进行实验检测,并选取基于几何特征辨识跑道的两种算法进行对比,3种方法均有效检测出了7幅场景中的真实跑道,但是本文方法在7幅数据中总的虚警和漏警个数均为1,而两种对比算法中的虚警个数分别为2和11、漏警个数分别为8和1。结论 本文方法不仅能有效检测出机场跑道区域,且检测效果更好,计算量较小,虚警和漏警率低,效率更高。  相似文献   

18.
The ship detection in polarimetric synthetic aperture radar (PolSAR) mode is a hot topic in recent years, because of the diversity of polarimetric scattering mechanisms between ship targets and sea clutter. To improve the detection performance of ship targets, this paper mainly develops the ship detection method based on the contrast enhancement utilizing the polarimetric scattering difference. The algorithm first enhances the target signal utilizing the scattering difference of the polarimetric coherency matrix between ship targets and sea clutter, and then a simple threshold is applied to distinguish the ship targets from the sea clutter. Finally, real PolSAR datasets recorded by AirSAR system are used to evaluate the effectiveness of the proposed detection method. Compared with other detection methods, experimental results indicate that the proposed method can effectively improve the detection performance of ship targets.  相似文献   

19.
ABSTRACT

Automatic edge detection for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. The classic methods apply the fixed-shape windows to detect the edges, whereas their performance is limited in heterogeneous areas. This article presents an enhanced edge detection method for PolSAR data based on the directional span-driven adaptive (DSDA) window. The DSDA window has variable sizes and flexible shapes, and is constructed by adaptively selecting samples that follow the same statistical distribution. Therefore, it can overcome the limitation of classic fixed-shape windows. To obtain refined and reliable edge detection results in heterogeneous urban areas, we adopt the spherically invariant random vector (SIRV) product model since the complex Wishart distribution is often not met. In addition, a span ratio is combined with the SIRV distance to highlight the dissimilarity measure and to improve the robustness of the proposed method. The simulated PolSAR data and three real data sets from experimental synthetic aperture radar, electromagnetics institute synthetic aperture radar, and Radarsat-2 systems are used to validate the performance of the enhanced edge detector. Both quantitative evaluation and visual presentation of the results demonstrate the effectiveness of the proposed method and its superiority over the classic edge detectors.  相似文献   

20.
This article investigates the scattering characteristics of ridging patterns in agriculture by the use of C-band polarimetric synthetic aperture radar (PolSAR) images. The polarimetric signatures of periodic potato fields and row wheat in different directions are highlighted using a set of polarimetric parameters. Enhanced coherent scattering is observed when the alignment direction of the ridging patterns is perpendicular to the radar’s line of sight (LOS). The dominant backscattering mechanism of the ridging patterns is deduced by evaluating different polarimetric parameters. The increased copolarized backscattering coefficients and copolarized correlation coefficient, and the reduced entropy and polarimetric alpha angle, indicate a strong contribution of odd scattering to ridging patterns aligned perpendicular to the LOS. We also compare the dominant contributions to the backscattering of ridging patterns in different phenological stages. Although the canopy changes of potato and wheat with time are significant, the underlying periodic surface changes the dominant scattering mechanism of potato fields over all the phenological stages, and the wheat aligned parallel with the flight direction of radar still has relatively high coherent scattering in the different vegetation development stages. The variability analyses undertake in this study allow a more detailed documentation of the physical scattering process of the ridging patterns in agriculture, and will improve the applicability of synthetic aperture radar images in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号