首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate polymers are proven to be potential green corrosion inhibitors because of their outstanding structural features and eco-friendliness. Work undertaken reflects the effectiveness of biopolymer amylopectin (AMP) as an eco-friendly green inhibitor to mitigate the deterioration of zinc in 0.1 M sulphamic acid (NH2SO3H). Electrochemical studies like potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were applied for corrosion rate measurement in the absence and presence of AMP. Thermodynamic and kinetic parameters were calculated and described in detail. The results were fitted into a suitable adsorption isotherm model, and an appropriate mechanism was proposed for the corrosion inhibition process. A detailed surface morphology study was done using scanning electron microscopy (SEM), electron-dispersive X-ray (EDX), and atomic force microscopy (AFM) techniques. The inhibition efficacy of AMP increased with an increase in its concentration and temperature. Upon the addition of the inhibitor, corrosion potential shifted more towards the positive side, indicating more control of the anodic process. The adsorption of AMP over zinc conformed to the Freundlich adsorption isotherm. For the concentration of 0.1 gL−1, maximum corrosion inhibition efficiency of 74% could be accomplished. Surface studies reaffirmed the adsorption of AMP on the surface of the metal. Thus, AMP turned out to be an effective green inhibitor with economic benefits.  相似文献   

2.
The inhibition efficiency of Zn2+, 3-phosphonopropionic acid (3-PPA), benzotriazole (BTA) and two synthesized benzotriazole derivatives namely 1-(2-pyrrole carbonyl) benzotriazole (PCBT) and 1-(2-thienylcarbonyl) benzotriazole (TCBT) were evaluated as inhibitors for the corrosion of mild steel in ground water. The inhibition efficiencies of PCBT and TCBT in combination with Zn2+ and 3-PPA were also investigated and the results were compared with BTA. In order to study the corrosion rate and inhibition efficiency we employed potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Further characterization using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) demonstrates the adsorption of inhibitor and the formation of corrosion products on the mild steel surface, respectively. Combination of PCBT along with Zn2+ and 3-PPA shows better corrosion inhibition efficiency than other inhibitor combinations and the individual inhibitors.  相似文献   

3.
The effect of commercially available pharmaceutically active compound amikacin disulfate (AMK) against the corrosion of copper in 1 M HNO3 solution was investigated using Tafel polarization, electrochemical impedance spectroscopy (EIS), and weight loss techniques. The results show that inhibition efficiency (IE %) increases with increasing inhibitor concentration from 0.1 to 1.0 mM. Increasing the temperature increased the corrosion rate, and results decreased the inhibition efficiency. The adsorption of inhibitor obeyed Langmuir adsorption isotherm model via physisorption mechanism. EIS technique exhibits one capacitive loop, indicating that the corrosion reaction is controlled by charge transfer process. Polarization measurements showed that the AMK is mixed-type inhibitor. The surface morphologies were studied by scanning electron microscopy and atomic force microscopic techniques. The corrosion mechanism were explained by Fourier transform infrared spectroscopy.  相似文献   

4.
The inhibitive synergistic effect between a cationic gemini surfactant, 1,3-propane-bis(dimethyl dodecylammonium bromide) (12-3-12), and bromide ion for the corrosion inhibition of cold rolled steel in 0.5 mol L−1 H2SO4 was investigated by weight loss, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS). The inhibition system composed by 12-3-12 and bromide ion is efficient. The adsorption mechanism of the 12-3-12 and bromide ion on steel in acidic medium is discussed on the basis of experimental data and an adsorption model is proposed. Adsorption of inhibitor system on the mild steel surface in acidic medium obeys Langmuir’s adsorption isotherm. In addition, potentiodynamic polarization studies show that the system acts as a mixed-type inhibitor. Electrochemical impedance spectroscopy also suggests the formation of a protective layer on the steel surface by the adsorption of surfactant molecules and bromide ions.  相似文献   

5.
The present work investigates corrosion behaviour of aluminium alloy in 3.5 % sodium chloride medium at 28 °C in the absence and presence of 0.5, 1.0, 1.5 and 2.0 % g/v concentrations of zinc gluconate using gravimetric and electrochemical techniques. The aluminium alloy was cut to corrosion coupons, and immersed into 3.5 % sodium chloride solution containing different inhibitor concentrations (0.5, 1.0, 1.5 and 2.0 % g/v) within a period of twenty-eight days. The surface morphology of the metal was examined by high resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS). From the results, it was found that the adsorption of zinc gluconate reduced aluminium alloy corrosion in the sodium chloride medium. Experimental results also showed that inhibition efficiency increased with an increase in zinc gluconate concentration. Furthermore, potentiodynamic polarization results revealed decrease in corrosion rates (CR), corrosion current densities (Icorr), and increasing corrosion resistance (Rp) in the presence of zinc gluconate in 3.5 % NaCl solution. Tafel polarization analyses indicated that zinc gluconate is a mixed type inhibitor. The adsorption of zinc gluconate on the aluminium alloy surface followed Langmuir adsorption isotherm.  相似文献   

6.
The inhibitory effect of 3a,6a-diphenyltetrahydro-1H-imidazo [4,5-c] [1, 2, 5] thiadiazole-5(3H)-thione 2,2-dioxide (TTU) on the corrosion behaviour of mild steel in 0.5 M H2SO4, at (30 ± 0.5) °C was studied by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electron microscopy measurements. The effect of inhibitor concentration on the corrosion rate, surface coverage and inhibition efficiency is investigated. Results show that TTU exerts a strong inhibiting effect on mild steel corrosion and acts as a cathodic-type inhibitor. TTU does not affect the mechanism of the cathodic reaction while the anodic reaction mechanism changes upon addition of the inhibitor. Possible mechanistic pathways for the inhibition process are proposed. The inhibition efficiency of TTU may be due to either the adsorption of inhibitor molecules building a protective film or the formation of an insoluble complex of the inhibitor with metal cations. TTU adsorption obeys the Langmuir model.  相似文献   

7.
In order to enhance the solubility of chitosan in water and its corrosion inhibition performance on Q235 steel in 1 M HCl solution, N‐vanillyl‐O‐2′‐hydroxypropyltrimethylammonium chloride chitosan (VHTC) was synthesized. The structure of VHTC was characterized by FT‐IR and 1H‐NMR spectroscopy. The corrosion inhibition performance of VHTC on Q235 steel in 1 M HCl solution was studied by weight loss, polarization, electrochemical impedance spectroscopy (EIS) and stereo microscope analysis. Experimental results indicate that VHTC shows better inhibition efficiency compared to chitosan. When the concentration of VHTC increases to 200 mg L?1, the inhibition efficiency reaches 90 %, which is almost equal to the conventional corrosion inhibitors (e.g., imidazoline). The polarization study demonstrates that VHTC is a mixed‐type inhibitor caused by a geometrical blanketing effect. The charge transfer resistance is proportional to the inhibitor concentration as revealed by the EIS results, indicating that the protective film on the Q235 steel surface is formed by adsorption of the inhibitor molecules. The inhibition efficiency of VHTC achieves the maximum value within 24 h when the concentration of VHTC is 200 mg L?1. The morphology observation of the corroded steel surface indicates that the corrosion of Q235 steel in 1 M HCl solution is significantly inhibited after introducing VHTC into the acidic solution.  相似文献   

8.
A newly synthesized pyrimidine–based compound, 5-(4-hydroxy-3-methoxyphenyl)-2,7-dithioxo-2,3,5,6,7,8-hexahydropyrimido[4,5-d]pyrimidin-4(1H)-one (PP), was evaluated as a promising inhibitor for the CO2 corrosion of API X60 steel in NACE 1D196 brine solution. Under rotation speed of 1000?rpm, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) were complemented with scanning electron microscopy (SEM), X-ray diffraction (XRD) and Attenuated total reflectance infrared (ATR-IR) techniques to assess the corrosion inhibition performance. PP provided inhibition efficiency up to 90% at 20?ppm. It adsorbs on the Fe (110) phase on the steel using its heteroatoms and aromatic rings. Its adsorption greatly reduces the steel surface pitting corrosion.  相似文献   

9.
The corrosion inhibition of Mg–Al–Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 × 10−3 mol dm−3. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg–Al–Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.  相似文献   

10.
陈世亮  刘峥  刘洁  何育梅 《化工学报》2012,63(10):3225-3235
利用邻氧乙酸苯甲醛缩4-氨基苯甲酸钾盐席夫碱(K2L1)缓蚀剂在20#碳钢表面制备了自组装单分子膜(SAMs),通过电化学方法研究了缓蚀剂的合成条件、自组装时间等因素对成膜的影响,结果表明,合成中KOH与邻氧乙酸苯甲醛按2:1摩尔比进行反应得到的K2L1缓蚀剂在碳钢表面自组装3 h后,可以形成稳定、致密的缓蚀膜。缓蚀性能的研究表明,碳钢表面K2L1-SAMS抑制了碳钢的阴极还原过程,改变了电极表面双电层结构,具有良好的缓蚀效果(最高缓蚀效率可达95%以上),交流阻抗和极化曲线得到的结论是一致的。同时研究表明K2L1的吸附行为符合Langmuir吸附等温式,吸附机理是典型的化学吸附。量子化学计算结果表明,K2L1分子具有多个吸附活性中心,这些活性原子的前线轨道能与碳钢表面铁原子的前线轨道相互作用,因而使得K2L1分子在碳钢表面形成吸附膜,阻止了碳钢在饱和CO2油田水介质中的溶解。X射线光电子能谱(XPS)分析表明,K2L1通过配位键在碳钢表面形成了稳定的缓蚀膜。  相似文献   

11.
The inhibition effect of natural black cumin oil on the corrosion of nickel in 0.1 M HCl solution was studied using galvanostatic and potentiodyanmic anodic polarization techniques. It was found that the inhibition efficiency increased with an increase in the inhibitor concentration of this oil. The inhibitive action of black cumin oil was attributed to the adsorption on metal surface. The adsorbed layer acts as a barrier between the metal surface and aggressive solution, leading to a decrease in the corrosion rate. The adsorption process follows the Langmuir adsorption isotherm. It was found also that black cumin oil provides good protection to nickel against pitting corrosion in sodium chloride solutions.  相似文献   

12.
The passivation and pitting corrosion of tin in sodium gluconate (SG) solutions was studied by using potentiodynamic and cyclic voltammetric techniques. Some samples were examined by X-ray and SEM. The effect of the concentration of gluconate ion, pH, potential scanning rate, successive cyclic voltammetry, switching potential and progressive additions of halide ions on the passivation and pitting corrosion of a tin anode was discussed. The data obtained show that low concentrations of SG have an inhibition effect on the pitting corrosion of tin in neutral media. The pitting corrosion of tin increases with increasing SG concentrations due to the formation of soluble tin-gluconate complex. The critical pitting potential depends on the gluconate ion concentration, pH and scan rate. Two cathodic peaks are observed in the cathodic polarization curve, corresponding to the reduction of the dissolved pitting corrosion products. The critical pitting potential shifts progressively to more negative values with increasing halide ion concentration. In all experiments, the aggressive action of halides decreased in the order Cl>Br>I.  相似文献   

13.
The inhibition effect of ceftobiprole against the corrosion of mild steel in 1 M HCl solution was studied by weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and atomic force microscopy techniques. Inhibition efficiency increased with inhibitor concentration where as decreased with acid concentration. Data obtained from EIS studies were analyzed to model the corrosion inhibition process through appropriate equivalent circuit models. The adsorption of ceftobiprole obeyed Langmuir adsorption isotherm. Both thermodynamic and activation parameters were calculated and discussed. Polarization curves indicated that they are mixed type of inhibitors. Polarization curves showed that ceftobiprole act as mixed-type inhibitor. The results obtained from weight loss, EIS and Potentiodynamic polarization are in good agreement.  相似文献   

14.
The inhibition effect of poly(aniline) on pure iron corrosion in 1M HCl and with various H+ ions and Cl? ions concentrations was investigated by the polarization and electrochemical impedance spectroscopy methods. The results showed that poly(aniline) suppressed both cathodic and anodic processes of iron dissolution in 1M HCl by its adsorption on the iron surface according to Langmuir's adsorption isotherm. The inhibition efficiency of poly(aniline) was found to increase with the inhibitor concentrations. Further, it was observed that, there was no significant variation in corrosion potential (Ecorr) values in the presence of inhibitors suggesting that, this polymer behaved as mixed type inhibitor. Similar studies for the inhibitor at 500 ppm in various concentrations of H+ and Cl? ions, have shown that the inhibition efficiency decreases with decrease in concentrations of H+ ions and Cl? ions in aqueous solution. It reveals that, the adsorption of inhibitor on iron surface is by more cationic form of inhibitor and higher efficiency at higher H+ and Cl? ions is due to enhanced adsorption of cat ionic form of inhibitor molecules. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Sinapinic acid was studied for possible use as an Al–2.5Mg alloy corrosion inhibitor in a 0.5 mol dm−3 NaCl solution. Measurements were performed on a rotating disc electrode in a quiescent solution and at different electrode rotation rates and electrolyte temperatures. Electrochemical parameters for the Al–2.5Mg alloy were determined using polarization techniques and electrochemical impedance spectroscopy (EIS). The investigated compound acts as a cathodic-type inhibitor and the inhibition is ascribed to the adsorption of the inhibitor onto the electrode surface. The electrode coverage follows the Freundlich adsorption isotherm.  相似文献   

16.
The effect of three antibacterial drugs (3-thiazinonyl-bicyclo [4.2.0] octene-carboxylate derivatives) on the corrosion behavior of stainless steel type 304 in 1.0 M HCl solution has been investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increased with increase in inhibitor concentration but decreased with increase in temperature. The thermodynamic functions of corrosion and adsorption processes were evaluated. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of these inhibitors was found to obey Langmuir’s adsorption isotherm. Synergism between iodide ion and inhibitors was proposed. The inhibitive action was satisfactory explained by using both thermodynamic and kinetic models. The results obtained from the three different techniques were in good agreement.  相似文献   

17.
The corrosion behavior of mild steel in CO2-saturated 5% NaCl solution with N-[2-[(2-aminoethyl) amino] ethyl]-9-octadecenamide corrosion inhibitor at 25 °C has been studied by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) measurements. Both potentiodynamic polarization and EIS measurements reveal that this amido-amine precursor inhibits the carbon steel corrosion and the inhibition efficiency increases with increasing the inhibitor concentration. The corrosion inhibitor exhibits high corrosion efficiencies as a mixed-type inhibitor, with a predominant influence on the anode process. The organic inhibitor acts blocking surface sites at low concentrations and by modifying the adsorption mechanism forming a protective barrier against corrosive ions at high concentrations. EIS results show that the mechanism of its corrosion inhibition at concentrations higher than 0.82 × 10−5 M is by forming a protective bilayer with small pore sizes that hinders the passage of the reactive species. PM-IRRAS measurements demonstrate that the inhibitor is chemisorbed to surface steel. Therefore, its spectrum reveals that the inhibitor monolayer has an amorphous structure.  相似文献   

18.
Effects of 1,4-naphthoquinone (NQ) have been investigated as a corrosion inhibitor for aluminum in aerated and de-aerated solutions of 0.50 M NaCl using potentiodynamic polarization, chronoamperometry (CA), open-circuit potential (OCP), electrochemical impedance spectroscopic (EIS), scanning electron microscopic (SEM), cyclic voltammetric, and quartz crystal analyzer (QCA) techniques. These measurements revealed that the presence of NQ shifted the corrosion and pitting potentials to more noble values and decreased the anodic currents in the passive region in both aerated and de-aerated chloride solutions, and the surface and polarization resistances are increased as the concentration of NQ is increased. The most effective concentration of NQ for corrosion inhibition was found to be 1.0 × 10−3 M in both aerated and de-aerated chloride solutions. The QCA data indicate that adsorption of NQ molecules plays an important role in protecting the pits on the aluminum surface. The SEM images show that the presence of NQ decreased the severity of the pitting corrosion of aluminum to a great extent at −675 mV versus Ag/AgCl.  相似文献   

19.
The current research work was keen to examine the corrosion inhibition efficiency of mild steel (MS) in presence of aqueous extract of Araucaria heterophylla Gum (AHG) in 1?M H2SO4 medium. The phytoconstituents of the AHG were interpreted by GC-MS and corrosion inhibition efficiency was deduced using other techniques like weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Adsorption of inhibitor molecules on the mild steel surface was supported by Density Functional Theory (DFT) studies, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). It is seen from the results that the inhibitor exhibits optimum efficiency of 78.57% at 0.05% v/v on mild steel specimen in 1?M H2SO4 medium at room temperature. Tafel polarizations clearly show that the aqueous extract of AHG acts as a mixed type inhibitor. The change in the EIS parameters in presence of inhibitor is investigative of the protective layer formation of the mild steel surface. The adsorption is found to obey Langmuir adsorption isotherm. Thermodynamic and activation parameters for the corrosion inhibition process supported the physical adsorption mechanism.  相似文献   

20.
The inhibition effect of tween-85 on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss and potentiodynamic polarization methods. The results show that tween-85 is a good inhibitor in 1.0 M HCl and its maximum inhibition efficiency (IE) is 92% at very low concentration. Its adsorption obeys the Langmuir adsorption isotherm equation. The thermodynamic parameters of adsorption enthalpy (ΔH 0), adsorption free energy (ΔG 0) and adsorption entropy (ΔS 0) were calculated and discussed. Polarization curves show that tween-85 acts as a mixed-type inhibitor in hydrochloric acid. IE values obtained from weight loss and polarization are consistent. The adsorbed film on a CRS surface containing an optimum dose of tween-85 was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). An inhibitive mechanism is proposed from the viewpoint of adsorption theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号