首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
目前有关电催化剂应用的诸多研究领域,特别是商业领域,仍然由贵金属及其氧化物占据,但因其存在高成本和易中毒的壁垒而迫使科研人员把研究目光转向钨基电催化材料。氧化钨在制备条件得到有效控制的前提下可实现晶型结构及钨元素价态的多变,因此易于参加多种电化学反应,可实现对特定电化学反应的有效催化。回顾了不同晶相结构氧化钨基电极材料和不同异质结构钨基电极材料的制备方法、结构优势及其对各类电化学反应的优越催化性能,并从电极材料的制备和结构入手深入分析了文中所涉及电极材料优越催化性能的本质原因。以氧化钨及钨基电极材料的优越电催化性能为主线,辅以对电极材料的制备方法和特殊结构的分析,深入探讨了此类电催化材料的优势和发展方向,并总结本领域近5年的科研成果,为此类研究方向的深入开展提供了一定的借鉴经验。  相似文献   

2.
钴基材料作为非贵金属材料中重要的一员,因其具有较高理论容量、良好的催化活性及出色的热/化学稳定性,被广泛应用在超级电容器(SCs)和电催化等电化学能源储存与转化领域中。然而目前在钴基材料的应用中还存在诸多缺陷,如导电性偏低,活性位点暴露的不充分,测试过程中活性组分易团聚、分解,结构稳定性较差等。近年来,许多研究报道了改性钴基材料来提升其电化学性能,基于此,本综述详细介绍了近几年对钴基材料的改性研究,主要包括形貌调控、元素掺杂、构筑异质结、缺陷工程及与载体材料复合。然后,对其在SCs、电催化氧还原反应(ORR)、析氧反应(OER)及析氢反应(HER)中的应用进行系统性的总结。最后,提出钴基材料当前存在的问题和未来的发展方向。  相似文献   

3.
丁仕久  刘亮  刘培涛  冯爱玲 《功能材料》2022,(11):11136-11142
设计和合成具有高活性、耐久性的非贵金属电解水催化剂对能量转化和储存具有重要意义。在研究中,通过硝酸铁、硫代乙酰胺与二水钼酸钠在无水乙醇中的水热反应制备了铁掺杂二硫化钼(Fe-MoS2)的纳米材料。Fe-MoS2具有较高的析氧反应(OER)活性,在1 mol/L KOH电解质中,当电流密度为10 mA·cm-2时过电位为250 mV,塔菲尔斜率为219 mV·dec-1,而且Fe-MoS2在这些条件下可稳定超过10 h以上。同时其具有良好的析氢反应(HER)活性,在0.5 mol/L H2SO4电解质中,当电流密度为10 mA cm-2时过电位为220 mV。此外,在1 mol/L KOH电解液中,Fe-MoS2/C(阳极)//Fe-MoS2/C(阴极)两电极体系具有良好的电解水催化活性,在10 mA cm-2的电流密度下低电位为1.77 V。为开发...  相似文献   

4.
杨雯雯  熊昆  高雪  张海东  陈佳 《功能材料》2022,53(1):1041-1047+1063
电解水制氢是由阴极析氢反应(HER)和阳极析氧反应(OER)组成。由于HER和OER所需的过电位高,反应动力学迟缓,导致电解水槽电压远高于理论平衡电压,电能消耗严重。因此,探索高效、稳定的非贵金属基电催化剂具有重要的研究意义。利用静电纺丝技术构筑的纤维材料因其较大的比表面积、独特的化学结构、易于调节的组分以及快速的电子和物质传输性能而被广泛应用在能源转化与存储领域。基于此,综述了近几年电纺碳基纤维材料在电催化水分解制氢中的研究进展,重点关注了静电纺丝技术制备的纳米纤维电催化剂用于HER、OER以及作为双功能催化剂在全水分解中产生高催化性能的优势,并对电纺材料在电催化水分解中的应用特点及其未来可能面临的挑战和发展趋势进行了展望。  相似文献   

5.
6.
析氧反应(OER)是电解水制氢的阳极反应,其反应速度仅为阴极析氢反应(HER)速度的十分之一。为了加快反应速度,通常需要使用RuO2等贵金属催化剂,但贵金属的稀缺性及较低的催化活性限制了其发展。金属有机框架(MOFs)材料是一类非常具有发展前景的OER电催化剂,然而目前MOFs在电催化OER中的应用也面临诸多问题,例如制备过程复杂、配体价格昂贵、催化活性低等。在此,提出了一种简易的表面活性剂辅助法制备Co-Cu双金属MOF纳米片的方法,在室温下搅拌对苯二甲酸和硝酸铜、硝酸钴,十二烷基硫酸钠的混合溶液,即可得到尺寸约为100~200nm的Co-Cu MOF纳米片。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)等手段对材料结构进行了表征。电催化OER性能测试表明,Co-Cu MOF(nCo∶nCu=2∶1)在碱性条件下对OER反应具有优异的OER活性,达到电流密度10mA/cm2时的过电位(η10)仅为320mV,明显优于单一的Co M...  相似文献   

7.
处于纳米尺度的磷化物及其与贵金属构成的复合材料具有独特的物理和化学性质,在电催化领域有广泛应用。例如,在甲醇电催化氧化反应中,由于磷(P)比金属铂(Pt)或钯(Pd)等具有更大的电负性,金属原子的外层电子被P吸引而偏向P原子,从而间接提高了Pt或Pd对CO类中间产物的耐受性;在电解水析氢反应中,P可以作为质子受体,增强H+在金属上的吸附,从而促进析氢反应;在电解水析氧反应中,金属基磷化物容易被氧化成氧化物和氢氧化物,从而形成氧化物/氢氧化物-磷化物界面,进一步促进析氧反应。纳米颗粒的催化性能很大程度上取决于催化剂的结构、组分、组分之间的相互作用以及活性位点的电子结构,因此,对金属基磷化物基纳米复合材料的这些性质进行合理调控是提升其电催化性能的关键。本文所综述的材料范围包含金属基磷化物本身及其与贵金属构成的纳米复合材料,首先概括介绍金属基磷化物基纳米复合材料的合成方法和表征技术,进而阐述如何利用复合材料中晶格应变和电子耦合等物理效应提升电催化活性和稳定性。最后,围绕金属基磷化物基纳米复合材料电催化性能进一步提升的问题,对其未来合成策略和发展进行展望。  相似文献   

8.
张晓君  马梁  孙迎辉 《材料导报》2021,35(23):23040-23049
氢能作为一种可燃烧的新型能源,凭借其清洁无污染等优点,被认为是人类从根本上解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢气的重要方法之一,也是现代清洁能源技术的重要组成部分.随着实际需求的不断增长,如何利用高效低耗的电催化剂来提升反应速率,已经成为当前新能源领域的研究重点之一.电解水反应由阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应组成,其中HER反应相对容易进行;而相比于HER反应,OER反应动力学缓慢,是影响电解水效率的主要原因.为了提高电解水制氢的能量转化效率,高效OER电催化剂成为研究电解水制氢技术的关键因素.过渡金属催化剂由于其特殊的d轨道结构和在地球上丰富的储备量成为OER催化剂研究领域的热点,但是目前存在的主要问题是,与贵金属催化剂相比,过渡金属催化剂的催化活性较差.因此,发展一些高催化活性和高效稳定的电催化剂,成为该领域研究关注的重点.在过去的十余年间,硫化物、硒化物、磷化物和硼化物等非贵金属基OER电催化剂被大量研究并取得了长足的发展.在这些催化剂中,硫化物型电催化剂不仅具有成本优势,而且在析氧过电位、耐久性等方面正在接近甚至超越RuO2和IrO2等贵金属催化剂,颇具应用潜力.本文主要介绍了电解水析氧反应在不同电解质中的反应机理,从硫化物型OER电催化剂的物理化学性质入手,证实了硫化物型OER电催化剂在析氧反应中具有独特的优势,最后综述了有关硫化物型OER电催化剂在改进策略等方面的研究进展.  相似文献   

9.
王思弘  宋钫 《材料导报》2022,(23):14-26
电解水制氢是风能、潮汐能、太阳能等可再生能源转换和存储的重要途径。受限于四电子缓慢动力学过程,析氧反应(Oxygen evolution reaction, OER)是水分解的瓶颈反应。高活性析氧电催化剂是实现高效电解水制氢的关键之一。自从20世纪电解水发展以来,金属氧化物由于具有较好的活性和稳定性,是研究最深入也是最有发展前景的一类低成本析氧电催化剂。对催化反应机理的认识是高效析氧电催化剂理性设计的前提和关键,开发高效稳定的析氧催化剂并阐明其反应机理是目前析氧电催化领域的热点课题。按照一般异相催化的机理范式,人们提出了传统吸附机理,并建立了相应的活性预测模型来指导催化剂的研究。然而随着研究的深入,基于传统催化机理的活性预测模型和描述符的局限性日趋显现,部分新型催化剂的高活性和动力学特征无法用传统机理模型进行解释,析氧催化剂的研究也由此遭遇瓶颈。近年来,得益于各种先进表征手段和理论计算的飞速发展,新型析氧电催化机理逐渐被发展,为下一代高性能电催化剂的指明了方向。目前提出的新型催化机理主要有:晶格氧机理、双位点协同耦联机理、质子受体机理。同时,近期在一些催化剂中影响催化剂稳定性的阳离子析...  相似文献   

10.
韩斌  冯思琛  徐俊  李朋威 《材料导报》2021,35(14):14001-14006
层状双金属氢氧化物(LDH)因具有组成和结构易于调变等优势而被广泛用作析氧反应(Oxygen evolution reaction,OER)催化剂.通过溶剂热法合成了由二维纳米片组成的花状结构的NiCo-LDH材料,并利用Fe离子对其进行刻蚀,合成了 Fe掺杂的NiCo-LDH.在OER催化性能测试中,与未刻蚀的NiCo-LDH相比,在电流密度为10 mA·cm-2时,Fe掺杂的NiCo-LDH材料的过电位仅为273 mV,塔菲尔斜率为98 mV·dec-1,OER性能显著提升.此外,所合成的Fe掺杂的NiCo-LDH材料还表现出良好的长期稳定性,经过16 h的连续测试,其OER催化活性仍然能保持在80%.Fe离子刻蚀使NiCo-LDH纳米片具有较多的边缘缺陷,能够提供更多的边缘位点作为活性中心;并且Fe离子的引入改变了NiCo-LDH的电子结构,增加了 LDH的层间距离,从而有效改善了催化剂的催化活性和动力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号