首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO_3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为:Zr~(4+)+2DMHMP+4NO~-_3=Zr(NO_3)_4·2DMHMP随着硝酸浓度的增大,还会生成Zr(NO_3)_4·2DMHMP·2HNO_3和Zr(NO_3)_4·2DMHMP·3HNO_3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

2.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为: Zr4++2DMHMP+4NO-3=Zr(NO3)4·2DMHMP 随着硝酸浓度的增大,还会生成Zr(NO3)4·2DMHMP·2HNO3和Zr(NO3)4·2DMHMP·3HNO3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

3.
研究了HNO3介质中甲基膦酸二甲庚酯(DMHMP)对Pu(Ⅳ)的萃取性能,考察了DMHMP浓度、NO-3浓度、HNO3浓度以及温度对Pu(Ⅳ)分配比的影响。确定了DMHMP萃取Pu(Ⅳ)的萃合物的组成为Pu(NO3)4·2DMHMP,其萃取反应方程式为:■其中Pu(Ⅳ)与NO-3形成中性分子,再与DMHMP结合成为中性配合物进入有机相。在实验范围内Pu(Ⅳ)分配比与DMHMP浓度的平方、NO-3浓度的四次方成正比,萃取过程为放热反应,反应的焓变为-34.46 kJ/mol。  相似文献   

4.
237Np半衰期较长,具有较高的生物毒性,使其成为高放废液非α化过程中重点关注的核素之一。本工作采用新型的N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA)为萃取剂,研究了萃取剂浓度、水相初始硝酸浓度和温度等因素对DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的影响。结果表明:随着DMDODGA浓度和水相初始硝酸浓度的增加,Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的分配比均增大。萃取剂浓度小于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶2型萃合物;萃取剂浓度大于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶3型萃合物。萃取剂浓度在0.1~1.0 mol/L范围内,DMDODGA与Np(Ⅴ)、Np(Ⅵ)均生成1∶2型萃合物。DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的ΔH分别为-59.55、-22.02、-31.40 kJ/mol,3个反应均为放热反应,降低温度有利于反应的正向进行。  相似文献   

5.
甲基膦酸二(1-甲庚)酯萃取硝酸铀酰和硝酸钍机理研究   总被引:1,自引:1,他引:0  
本文研究了甲基膦酸二(1-甲庚)酯(DMHMP)苯溶液萃取硝酸铀酰和硝酸钍的机理。分别测定了萃合物的组成为UO_2(NO_3)_2·2DMHMP和Th(NO_3)_4·3DMHMP。在恒定离子强度μ=2.0时,求得了DMHMP萃取硝酸铀酰和硝酸钍的平衡常数分别为1gK_U=4.6,1gK_(Th)=4.3。同时用Leden法求出了硝酸钍络合物的四级累积稳定常数β_1=8.0,β_2=5.2,β_3=0.8,β_4=1.3,与计算机算得结果基本一致。对萃取分配比的实验值和计算值进行了比较,结果相符。还比较了磷酸三丁酯(TBP)对铀钍的萃取数据,表明DMHMP用于铀钍的分离和纯化上是一种性能优于TBP的萃取剂。  相似文献   

6.
次锕系核素(主要为Am、Cm和Np)是放射性废物中长期放射性毒性的最大贡献体,将这些次锕系核素从废物中去除后可以将必要的储存时间由原来的大于106年减少到不到103年。近年来,二甘醇二酰胺(两个酰胺基团之间通过醚基连接)作为三齿试剂与金属离子配位得到了广泛的研究。在这类试剂中,N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)被认为从高放废液(HLLW)中分离三价锕系和镧系具有较大的应用前景。本工作以TODGA和N,N-二己基辛酰胺(DHOA)为萃取剂,研究了以正十二烷为稀释剂,二者对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取分配比大小顺序均为:D(Np(Ⅳ))>D(Np(Ⅵ))>D(Np(Ⅴ)),并且均对Np(Ⅴ)的萃取能力较小;TODGA/正十二烷体系中加入DHOA时,对Np(Ⅳ,Ⅴ,Ⅵ)萃取具有一定的反协同效应;TODGA萃取Np(Ⅳ,Ⅴ,Ⅵ)的方程式分别为:Np4+(aq)+4NO-3(aq)+3TODGA(org→)Np(NO3)4.3TODGA(org)NpO+2(aq)+NO-3(aq)+TODGA(org→)NpO2(NO3).TODGA(org)NpO2+2(aq)+2NO-3(aq)+2TODGA(org→)NpO2(NO3)2.2TODGA(org)  相似文献   

7.
近年来,核燃料后处理的计算机模拟研究成为世界各国研究核燃料后处理工艺过程的重要手段。本工作以磷酸三丁酯为萃取剂、煤油为稀释剂的混合有机萃取剂,在HNO3介质中络合萃取Np(Ⅳ、Ⅵ)的体系中,利用BP人工神经网络将萃取平衡分配比和萃取操作条件如初始硝酸浓度、初始Np(Ⅳ、Ⅵ)浓度、初始U(Ⅵ)浓度及温度进行了关联。建立了该体系下磷酸三丁酯络合萃取Np(Ⅳ、Ⅵ)的人工神经网络模型,并用该模型计算且检验了不同萃取条件对平衡分配比的影响。结果表明:在25~60℃、水相c0(HNO3)为0.1~11mol/L、水相初始铀质量浓度为0~210g/L时,该人工神经网络模型可以对Np(Ⅳ、Ⅵ)萃取分配比进行预测,具有较高的计算精度。经过文献Np(Ⅳ、Ⅵ)萃取平衡分配比实验值检验,其检验平均相对误差在2%以内。  相似文献   

8.
螯合萃取剂噻吩甲酰三氟丙酮(HTTA)和各种中性磷类萃取剂在不同酸性介质中协同萃取钍已有报道,但与甲基膦酸二(1-甲庚)酯(DMHMP)的协同萃取机理迄今未见。我们曾研究过DMHMP萃取硝酸钍的机理。本文研究DMHMP与HTTA的苯溶液从硝酸介质中对硝酸钍的协同萃取。  相似文献   

9.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

10.
用低浓缩铀靶代替高浓缩铀靶辐照进行~(99)Mo的生产是一个必然的趋势,但采用低浓缩铀靶辐照后裂变体系的组成可能发生改变,从而影响~(99)Mo的分离提取过程。为此,本工作以低浓缩铀辐照后溶解的模拟溶液为研究对象,在U(Ⅵ)大量存在的情况下,考察了二(2-乙基己基)磷酸酯(P_(204))从硝酸体系中萃取Mo(Ⅵ)的行为,重点研究了不同Mo(Ⅵ)浓度下萃取时间、萃取剂浓度、硝酸浓度、温度、其他主要元素(Cs(Ⅰ),Zr(Ⅳ),Y(Ⅲ),Nd(Ⅲ),Al(Ⅲ))等因素对萃取的影响。实验结果表明,不同Mo(Ⅵ)浓度下,P_(204)-磺化煤油对硝酸体系中Mo(Ⅵ)的萃取行为相似;在相比为1时,φ=10%P_(204)-磺化煤油对Mo(Ⅵ)即有较好的萃取效果;硝酸浓度不大于2mol/L时分配比随着硝酸浓度的增加而减少,但硝酸浓度进一步增大时对萃取无显著影响;萃取反应的ΔH和ΔG均为负值,表明该萃取是一个常温下能自发进行的放热反应;溶液中U(Ⅵ)和本工作考察的其它主要元素存在及其浓度的改变不会显著影响P204对Mo(Ⅵ)的萃取行为,且采用P_(204)可将Mo(Ⅵ)与Y(Ⅲ)、Nd(Ⅲ)、Al(Ⅲ)选择性地分离。  相似文献   

11.
以正十二烷作为稀释剂,研究了N,N'-二(2-乙基己基)二甘酰胺酸(HDEHDGA,简称HL)萃取剂对硝酸介质中Dy(Ⅲ)离子的萃取性能。结果表明:该萃取剂对Dy(Ⅲ)有良好的萃取性能,在硝酸浓度为0.3~4.0mol/L时,Dy(Ⅲ)的分配比(D(Dy))随水溶液中平衡酸度的增加先减小后增大,在HNO_3浓度大约为1.0mol/L时,分配比最小。萃取分配比随水相硝酸浓度变化的关系表明,HDEHDGA萃取Dy(Ⅲ)的机理随硝酸浓度变化而不同。从3.0mol/L HNO_3中萃取Dy(Ⅲ)的分配比与萃取剂浓度及硝酸根浓度的关系表明,萃取过程中HDEHDGA主要以中性萃取剂形式与Dy(Ⅲ)配位,萃取反应方程式可能为:Dy(Ⅲ)+2HL+3NO_3~-=Dy(Ⅲ))(HL)_2(NO_3)_3该反应为放热反应,反应的热焓为-63.38kJ/mol,降低萃取温度有利于HDEHDGA对Dy(Ⅲ)的萃取。  相似文献   

12.
以D_2EHPA做萃取剂,以尿素做Pu(Ⅲ)的稳定剂,建立了硝酸介质中Pu(Ⅲ)和Pu(Ⅳ)的分析方法。研究表明,尿素与硝酸混合后放置时间影响Pu(Ⅳ)的定量萃取和Pu(Ⅲ)的稳定。选择适当条件,可实现硝酸介质中Pu(Ⅲ)和Pu(Ⅳ)的测定。  相似文献   

13.
本文研究了用磷酸三(2—乙基己基)酯(以下简称为TIOP)作固定相、硝酸等为流动相的萃取色层法在分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)中的应用。利用Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)在TIOP—硅胶柱上分配系数的差异使不同价态的镎得到分离。Np(Ⅴ)不被TIOP吸附,Np(Ⅳ)、Np(Ⅵ)分别用HNO_3+HF、HNO_3+HF+Fe(NH_2SO_3)_2洗脱,从而达到定量分离。文中并对光的影响进行了讨论。最后简单叙述了用TIOP—萃淋树脂来分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的实验。  相似文献   

14.
本文研究了在硝酸—甲醇混合介质中,水相有机添加剂醇的含量、酸度以及萃取剂浓度对HDEHP萃取Cf(Ⅲ)、Cm(Ⅲ)及Np(Ⅳ、Ⅴ)的影响。并与Am(Ⅲ)的萃取,以及与纯硝酸介质中的萃取作比较,对它们的萃取机理作了简单的讨论。测定了Np(Ⅳ)在硝酸—甲醇混合介质中氧化态的稳定性,不同浓度硝酸、亚铁—肼—硝酸混合液,以及饱和草酸溶液反萃取分离Cf、Cm、Np和Pu的能力。在此基础上为分离测定Cm中Cf,以及Cf、Cm、Pu中Np提供了方法。方法的回收率均为(95±3)%。  相似文献   

15.
本文研究了N_2H_5NO_3-Fe(Ⅲ)-HNO_3体系和模拟强放废液中Np(Ⅴ)的电解还原,讨论了酸度、温度、肼和铁浓度对Np(Ⅴ)电解还原速度常数和还原率的影响。Np(Ⅴ)的电解还原对Np(Ⅴ)的浓度呈一级反应。在1.5mol/l HNO_3,0.2mol/l肼和2g/l Fe(Ⅲ)存在下,29mA/cm~2电流密度,温度为30℃时,电解还原反应速度常数K为3.42×10~(-2)min~(-1),反应的活化能为38kJ/mol。提高酸度可以加快还原反应的速度和还原率。模拟强放废液中Np(Ⅴ)的电解还原进行得更快,比同酸度的N_2H_5NO_3-Fe(Ⅲ)-HNO_3体系的K值提高7-10倍。当料液酸度为1.5mol/l HNO_3,在0.2mol/l肼存在下,以29mA/cm~2电流密度,电解还原半小时,几乎100%Np(Ⅴ)被还原成Np(Ⅳ)。  相似文献   

16.
为了解镎在萃取过程中的化学行为,采用单级萃取研究了硝酸溶液中Np(Ⅴ)氧化为Np(Ⅵ)的行为和此过程中TBP萃取Np(Ⅵ)的性能。实验结果表明,提高硝酸浓度有利于Np(Ⅴ)的氧化,提高了萃取体系对Np(Ⅵ)的萃取;提高亚硝酸浓度加快了Np(Ⅵ)和Np(Ⅴ)之间氧化还原反应的进行,但是会降低平衡后萃取系统中Np(Ⅵ)的比例;升高温度可以提高Np(Ⅴ)转化为Np(Ⅵ)的速率。通过模拟1AF料液的混合澄清槽台架实验表明,自1AX中引入0.01 mol/L HNO2,同时将萃取温度升高到45℃,在1AF硝酸浓度为3.5mol/L的条件下,1A槽镎的萃取率可以达到80%。  相似文献   

17.
在制备、提纯Np(V)的基础上,考察了以亚硝酸钠为稳定剂、TBP/煤油经氧化处理及不经氧化处理,以及以尿素为稳定剂、TBP/煤油经氧化处理3种初始条件下,硝酸浓度、硝酸铝浓度、TBP浓度及温度对Np(V)萃取行为的影响,并对实验结果进行了讨论。  相似文献   

18.
本文研究了甲基膦酸二(1-甲庚)酯(DMHMP)和噻吩甲酰三氟丙酮(HTTA)苯溶液在硝酸介质中对硝酸铀酰的协同萃取机理,发现有显著的二元协同萃取效应,实验测得了协萃图、协萃系数,确定了协萃络合物的组成为UO_2(TTA)_2·DMHMP。在恒定离子强度μ=0.1时,求得协萃反应的平衡常数1gβ_(12)=3.74,还比较了TBP+HTTA协同萃取UO_2(NO_3)_2的机理。  相似文献   

19.
在制备并稳定Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的基础上,研究了它们在稀TBP/煤油与水相间的分配。考察了25℃下5%TBP/煤油萃取时硝酸浓度、硝酸铝浓度、六价铀浓度对3种价态镎萃取分配的影响,并考察了TBP浓度对它们的萃取影响。25℃下,Np(Ⅳ,Ⅴ,Ⅵ)的萃取反应方程及表观平衡常数分别为Np  相似文献   

20.
采用磷酸三丁酯(TBP)溶剂萃取法对从辐照镎靶溶解液中提取分离钚的可行性进行了研究。从料液制备、流程设计两个方面研究了Pu(Ⅳ)-Np(Ⅳ)组合作为萃取价态组合的可能性。研究了1,1-二甲基肼(UDMH)还原-亚硝酸钠氧化两步法将镎、钚控制在Pu(Ⅳ)-Np(Ⅳ)的方法。结果表明,99.9%以上Pu(Ⅳ)-99.5%以上Np(Ⅳ)在4 h内能够保持稳定。基于此,设计了从辐照镎靶溶解液中提取分离钚的萃取流程,并用串级实验进行了验证:1A中镎的回收率为99.5%;1B中镎的反萃率为0.8%,钚的反萃率为99.9%;1C中镎的反萃率为99.5%。结果表明,采用Np(Ⅳ)-Pu(Ⅳ)的价态组合进料,基本可实现镎钚的分离,但料液中Np(Ⅳ)-Pu(Ⅳ)价态的长时间稳定性及TBP对Np(Ⅳ)萃取能力弱等问题将影响该工艺的实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号