首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了获得高水热稳定的负载Ni催化剂,延长催化剂在含水液相体系中的使用寿命,以不同温度焙烧的SiO2-Al2O3为载体,采用浸渍法制备Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅立叶变换红外光谱、X射线衍射、NH3-程序升温脱附和H2-程序升温还原等方法进行表征,以水相1,4-丁炔二醇加氢为探针反应,研究载体焙烧温度对Ni/SiO2-Al2O3催化剂催化加氢性能及含水体系中稳定性的影响。结果表明,在(400~800) ℃,随着载体焙烧温度升高,活性组分Ni存在状态及催化剂加氢活性变化较小,但催化剂的水热稳定性下降,造成这一现象的原因是随着载体焙烧温度升高,载体表面SiO2聚集,暴露的Al3+增加,载体水合程度增大。载体焙烧温度400 ℃时,Ni/SiO2-Al2O3催化剂表现出最佳的水热稳定性。  相似文献   

2.
采用浸渍和粉末压片的方法制备了两种ZrO2-Al2O3复合载体并用于负载Ni基催化剂,并利用氮气等温物理吸附、X射线粉末衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对催化剂物化性质进行表征,考察了ZrO2-Al2O3复合载体制备方法及ZrO2的引入对Ni基催化剂在CO、CO2和CO-CO2共存的3种体系下甲烷化反应活性的影响。材料表征和活性测试结果表明,在CO甲烷化体系中,与单一Al2O3载体相比,引入ZrO2的复合载体能有效提高催化剂中Ni物种的分散度从而增强CO甲烷化过程中催化剂活性,且粉末压片法较浸渍法制备的复合载体能有效提高催化剂的还原度,降低还原温度,但前者会大大降低催化剂的比表面积;在CO2甲烷化体系中,当载体形貌和制备方法相同时,载体的变化对催化剂活性的影响较小,CO2转化率主要受到制备方法不同引起的物理性质如比表面积变化的影响;在CO-CO2共存体系中,由于CO在竞争吸附中比CO2更容易占据活性位点,所以呈现出优先进行CO甲烷化再进行CO2甲烷化、CO2的含量先增多后减少的规律。  相似文献   

3.
杨霞  秦绍东  李加波  孙守理 《化工进展》2016,35(Z2):179-182
采用共沉淀法制备了ZrO2-Al2O3复合载体,并进一步制备了MoO3/ZrO2-Al2O3催化剂,考察了不同ZrO2质量分数对催化剂结构及其耐硫甲烷化性能的影响。利用N2物理吸附、X射线衍射、H2程序升温还原和透射电子显微镜等手段对催化剂的结构进行了表征。结果表明,MoO3/ZrO2-Al2O3中ZrO2的添加可以明显削弱MoO3与载体间的相互作用,促进Mo物种的还原,适量ZrO2的存在还有助于提高催化剂的比表面积,改善Mo活性相的分散性,使催化剂表现出优异的耐硫甲烷化活性。  相似文献   

4.
苑丹丹  张永江  李锋  宋华 《化工进展》2015,34(7):1882-1886
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸为络合剂, 浸渍法制备了负载型Ni2P/TiO2-Al2O3催化剂前体, 程序升温H2还原法制备了Ni2P/TiO2-Al2O3催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了浸渍方法、Ni/P摩尔比、Ni2P负载量对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 当Ni/P比低于1:1时, 能得到单一的Ni2P物相;当Ni/P比为2:1时, 开始出现Ni3P物相。采用Ni/P比为1:1、Ni2P负载量为30%、采用共浸渍方法制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性, 在360℃、3.0MPa、氢油比500 (体积比)、液时体积空速2.0h-1的条件下反应4h时, 二苯并噻吩转化率为99.5%。  相似文献   

5.
杨霞  田大勇  孙守理  孙琦 《工业催化》2014,22(2):137-143
甲烷化工艺是煤制天然气的关键技术,甲烷化催化剂则是甲烷化技术的核心。Ni基催化剂具有活性高、选择性好和价格低廉等优点,但易积炭,积炭堵塞催化剂孔道,覆盖表面金属活性位,导致催化剂失活。稀土类金属氧化物(如CeO2、La2O3等)对Ni基催化剂的活性、稳定性、抗积炭性能以及活性组分的分散有明显的促进作用。采用共沉淀法制备了CeO2-La2O3复合氧化物载体,负载Ni后用于CO甲烷化反应,利用N2物理吸附、XRD、H2-TPR、XPS和TG等对催化剂结构进行表征。结果表明,Ni/CeO2-La2O3中CeO2的添加主要发挥了电子助剂的作用,CeO2的存在提高了催化剂表面Ni0周围的电子密度,促进Ni物种的还原,同时还能提高催化剂的抗积炭能力,使催化剂表现出更好的甲烷化活性与稳定性。在V(H2)∶V(CO)=1、反应温度450 ℃、空速24 000 h-1和常压下,Ni/CeO2-La2O3催化剂的CO转化率达82.7%。  相似文献   

6.
通过浸渍沉淀法分别制备Ni/Al2O3、Ni/CeO2和Ni/CeO2-Al2O3催化剂,并对其分别进行不同CO/CO2比例下COx共甲烷化性能评价。发现Ni/Al2O3催化剂催化CO转化为CH4的能力明显高于Ni/CeO2,而催化CO2甲烷化的性能则相反。采用Ni/CeO2-Al2O3催化剂,可以在提高CO转化率的同时而不降低CO2转化率。结合BET、XRD、TPR、TPD和原位红外等各种表征手段,发现CeO2掺杂虽然降低了催化剂的比表面积和金属Ni的分散度,但却可明显提高其吸附活化CO2的能力,这主要是由于具有较高含量氧空位的CeO2的掺杂可以提高载体表面碱性位,促使共甲烷过程中CO...  相似文献   

7.
考察B2O3负载量对于MoO3/CeO2-Al2O3催化剂对耐硫甲烷化活性的影响,利用BET、XRD、TEM、NH3-TPD等手段对催化剂进行了表征。结果表明,催化剂的耐硫甲烷化活性随B2O3负载量增加呈现先升高后降低的变化规律;当B2O3负载量为0.5%时,催化剂的耐硫甲烷化活性最高,CO转化率达到55%。结合表征分析,发现添加B2O3会影响催化剂载体的结构和表面酸度,从而影响活性组分的分散程度,进而影响MoO3/CeO2-Al2O3催化剂的耐硫甲烷化性能。催化剂的晶化程度太高或单位面积上的强酸量太多均不利于甲烷化反应;较好的活性组分分散度有利于催化剂甲烷化活性的提高。  相似文献   

8.
为提高现有负载型NiMoS催化剂的加氢活性,以碳纳米管为结构导向剂,分别采用浸渍法和溶胶-凝胶法制备了2种一维TiO2-Al2O3载体,并采用共浸渍法制备了相应的负载型NiMoS催化剂,探究了不同结构的载体对NiMoS/TiO2-Al2O3催化剂加氢脱氮性能的影响。结果表明,当选择以溶胶-凝胶法制备的一维TiO2-Al2O3为载体时,NiMoS/TiO2-Al2O3催化剂上的加氢脱氮活性较高,在350℃、氢压为3 MPa、转速为400 r/min的条件下反应4 h,喹啉的转化率达到99%以上,脱氮率达到40.75%。  相似文献   

9.
Ni基催化剂作为催化重整生物质焦油过程中一种高效的催化剂,仍然存在易烧结、易积炭等问题,使得其活性和稳定性难以得到保证。通过添加合适的助催化剂和使用催化剂载体可有效缓解Ni基催化剂的烧结与积炭问题。介绍了稀土元素Ce、磁性元素Fe和Co、碱土金属Ca和Mg作为助催化剂,以及天然矿物材料白云石和橄榄石、天然加工材料煅烧贝壳和稻壳炭、合成材料β-Al2O3和SBA-15作为载体的Ni基催化剂的研究进展,并展望了今后的研究方向。  相似文献   

10.
张艳敏  邹达  赵渊  钟梅  马凤云 《化工学报》2017,68(10):3805-3815
以Al2O3为载体,Ce、Co和Fe为助剂,采用机械化学法制备了4种镍基催化剂,对其进行了XRD、H2-TPR、BET、NH3-TPD等表征。当载气流量为50 ml·min-1,裂解温度为750℃时,在固定床反应器中考察了各催化剂对煤焦油模型化合物甲苯+芘裂解行为的影响。结果表明:4种催化剂均为介孔催化剂,且双金属催化剂的介孔有序度更高;催化剂中活性组分Ni主要以尖晶石NiAl2O4的形式存在;添加Fe助剂后,催化剂的酸强度较Ni/Al2O3增加,添加Ce和Co时则相反。评价实验表明,助剂对重质组分芘的裂解率影响较小,约为67%,然而Ce和Co对催化剂的抗积炭性能有利,其析碳分别较无助剂时降低28.8%和18.0%。  相似文献   

11.
高鑫华  沈卫华  方云进 《现代化工》2022,(3):114-117+122
采用等体积浸渍法制备镁铝尖晶石结构载体的Ni基催化剂,通过浸渍水解不同质量分数的(3-氨丙基)三乙氧基硅烷制备具有SiO2包覆层的Ni基催化剂,并加入La助剂,对比SiO2包覆层及添加La助剂对催化剂性能的影响。利用XRD、N2-物理吸附、H2-TPR、TEM、TG等技术对催化剂进行表征。结果表明,SiO2包覆层可以有效阻止高温条件下催化剂表面积碳的生成,在温度为750℃、n(H2O)/n(CH4)=1.0的严苛条件下,相较未进行包覆处理的催化剂,添加La助剂的10%SiO2包覆催化剂积碳速率降低90%以上。  相似文献   

12.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了载体焙烧温度、催化剂焙烧温度、还原温度、还原压力对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 升高载体焙烧温度有利于催化剂表面上活性物种的分散, 但焙烧温度过高会导致催化剂烧结, 适宜的载体焙烧温度为550℃。当还原温度为500~550℃时, 磷化镍主要以Ni12P5相形式存在, 且随着还原温度的升高, Ni12P5的衍射峰强度逐渐增强, 还原温度为700℃时, 可得到单一的Ni2P物相。载体焙烧温度为550℃, 催化剂焙烧温度为500℃, 还原温度为700℃, 常压还原制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性。在360℃、3.0MPa、氢油体积比500、液时体积空速2.0h-1的条件下, 反应4h时, DBT转化率为99.5 %。  相似文献   

13.
采用共沉淀法制备TiO2含量不同的TiO2-Al2O3复合载体,以传统的浸渍法制备活性金属负载量相同的NiMo/TiO2-Al2O3催化剂。运用N2低温吸附法、X射线衍射、H2程序升温还原和激光拉曼光谱等方法对催化剂进行表征,在10 mL微型反应装置上进行催化剂活性评价。结果表明,当复合载体中TiO2含量达到一定值后,TiO2在整个TiO2- Al2O3体系中的存在状态由高度分散转变为表面富集,XRD能够检测出锐钛矿型TiO2的特征峰;TiO2的添加对于催化剂的酸性能没有明显改变;激光拉曼光谱分析结果表明,TiO2的存在有利于生成八面体结构的钼物种,并在TiO2质量分数为8%时加氢脱硫活性达到较高水平。  相似文献   

14.
孟凡会  常慧蓉  李忠 《化工学报》2014,65(8):2997-3003
采用共浸渍法制备了Ni-Mn/Al2O3催化剂,考察了助剂Mn的含量对催化剂结构及浆态床CO甲烷化性能的影响。采用XRD、H2-TPR、BET、TEM、H2-化学吸附等表征对催化剂进行了测试分析,结果表明,Mn助剂的引入能够促进Ni物种在载体表面的分散,减弱Ni物种与载体的相互作用,降低催化剂的还原温度,提高催化剂的比表面积,减小活性金属Ni的晶粒尺寸。随着Mn含量的增加,Ni-Mn/Al2O3催化剂的甲烷化性能先升后降,其中以Mn含量为4%(质量分数)时的催化甲烷化性能最佳,添加过量的Mn导致活性组分Ni被部分覆盖,催化甲烷化性能下降。通过对16Ni4Mn/Al2O3催化剂样品的浆态床反应温度及反应压力的研究发现,当反应温度为280℃、反应压力为1.5 MPa时,催化剂样品16Ni4Mn/Al2O3的CO转化率及CH4选择性分别达到96.2%和88.8%。  相似文献   

15.
采用共沉淀法制备了CexZr1-xO2固溶体作为催化剂载体,采用柠檬酸络合法将镍负载于CexZr1-xO2载体上得到Ni/CexZr1-xO2催化剂,利用X射线衍射(XRD)、N2吸附-脱附(N2-BET)、程序升温脱附(TPD)、程序升温还原(TPR)等技术对催化剂进行表征,在常压微型固定床反应器上测试了CO2甲烷化的性能,考察了n(Ce)/n(Zr)、镍含量对催化性能的影响。研究发现制备的催化剂具有优异的活性,在常压和空速15 000 mL·g-1·h-1条件下,反应温度200℃时,12% Ni/Ce0.25Zr0.75O2催化剂(负载量为质量分数,下同)CO2的转化率达74%,CH4选择性为100%。12% Ni/Ce0.25Zr0.75O2催化剂300 h的稳定性测试结果显示其具有较高的抗烧结性能。催化剂的优异活性归因于采用了新的负载方法--柠檬酸络合法负载活性组分镍,该法实现了镍的高分散和催化剂的大的比表面积。  相似文献   

16.
采用溶胶-凝胶法制备了一系列TiO2、TiO2-Al2O3(TiAl)、MnO2/TiO2(MnTi)和MnO2/TiO2-Al2O3(MnTiAl)样品,在固定床实验装置上研究了MnTi和MnTiAl催化剂的脱硝、脱汞性能,并对相应的样品进行了BET、XRD、H2-TPR、XPS表征分析。表征结果表明,Al2O3掺入TiO2后能极大提高载体的比表面积,提升催化剂氧化还原性能,且有利于高价态锰离子(Mn3+和Mn4+)和化学吸附氧(O*)在催化剂表面富集。固定床实验结果表明,在反应温度范围内,MnTiAl催化剂脱硝、脱汞性能均优于MnTi催化剂,MnTiAl催化剂在200℃时脱硝、脱汞效率分别高达88.5%和96.1%。MnTiAl脱除烟气Hg0过程中,将Hg0氧化为Hg2+的同时,催化剂表面Mn3+、Mn4+和O*浓度均被消耗,同时烟气中的O2能将催化剂表面较低价态的锰离子(Mn2+和Mn3+)重新氧化为高价态锰离子(Mn3+和Mn4+),并且能补充催化剂表面的化学吸附氧(O*),进而实现催化剂催化氧化Hg0过程。  相似文献   

17.
以拟薄水铝石为前驱体,经不同温度焙烧制得Al2O3载体,等体积浸渍法制备Ni/Al2O3催化剂,采用X射线衍射、N2-物理吸附、扫描电镜、程序升温还原等对载体及催化剂进行表征,考察载体焙烧温度对Al2O3载体性质及其负载的镍基催化剂催化性能的影响。结果表明,随着焙烧温度的升高,Al2O3载体的比表面积减小,平均孔径增大,结晶度升高,晶粒度增大,晶型逐步转变为γ-Al2O3[(500~800) ℃]、δ-Al2O3[ (900~1 100) ℃]和α-Al2O3[(1 250) ℃]。合成气制甲烷催化剂活性变化趋势为:Ni/γ-Al2O3>Ni/δ-Al2O3>Ni/α-Al2O3,其中,800 ℃焙烧的γ-Al2O3负载的Ni基催化剂因稳定的晶型结构以及与NiO之间适当的相互作用而表现出最佳的催化活性及稳定性。  相似文献   

18.
基于MCM-41的镍基甲烷化催化剂活性与稳定性   总被引:8,自引:3,他引:5       下载免费PDF全文
张加赢  辛忠  孟鑫  陶淼 《化工学报》2014,65(1):160-168
采用浸渍法分别以MCM-41,Al2O3和SiO2 为载体制备了不同镍负载量的甲烷化催化剂,并在连续流动固定床反应装置上对其甲烷化催化活性进行了评价。研究结果表明,与Ni/Al2O3和Ni/SiO2相比,相同镍负载量的Ni/MCM-41催化剂具有更好的催化活性。同时研究了Ni含量对于Ni/MCM-41催化剂催化活性的影响,发现随着Ni含量的增加,CO转化率和CH4收率逐渐升高,并且在Ni含量大于10%(质量分数)以后趋于稳定。在n(H2):n(CO)=3:1、反应压力1.5 MPa、反应温度350℃及质量空速12000 ml·h-1·g-1的反应条件下,10%Ni/MCM-41催化剂CH4选择性达到94.9%,CO转化率接近100%。在100 h催化活性稳定性试验中,10%Ni/MCM-41催化活性无明显下降,表现出良好的催化活性稳定性。采用X射线衍射(XRD)、氮气物理吸附(BET)、热重分析(TG)及氢气程序升温还原(H2-TPR)等技术手段对催化剂进行了表征,结果表明Ni颗粒大小是影响Ni/MCM-41催化剂催化活性的主要因素。  相似文献   

19.
辛醇(2-乙基己醇)是重要的基本有机化工原料,其工业生产由丙烯氢甲酰化合成正丁醛、正丁醛自缩合制备2-乙基-2-己烯醛(辛烯醛)、辛烯醛加氢生成辛醇3个反应单元构成。本研究旨在以Ni/La-Al2O3为催化剂实现正丁醛顺序自缩合和加氢“一锅法”合成辛醇。首先制备了Ni/La-Al2O3催化剂,并考察了制备条件对其催化性能的影响,结果表明Ni/La-Al2O3适宜的制备条件为Ni负载量为25%(质量分数),浸渍Ni(NO32并老化后,于500℃下焙烧4 h,再于550℃还原3 h。在适宜的反应条件下,正丁醛完全转化,辛醇的收率为67.0%。结合XRD和SEM表征发现,γ-Al2O3水合是导致Ni/La-Al2O3催化剂失活的主要原因之一。  相似文献   

20.
通过等体积浸渍法制备单贵金属Pt/γ-Al2O3和双金属Pt-Ce/γ-Al2O3催化剂,考察Ce对催化剂活性的影响,确定催化剂最优配比。结果表明,当Pt的负载量为质量分数0.5%时,Pt/γ-Al2O3催化活性最高;当Pt的负载量为质量分数0.2%,Ce的负载量为质量分数1.0%时,Pt-Ce/γ-Al2O3催化剂的催化活性最高。Pt-Ce/γ-Al2O3催化剂的甲苯转化率高于Pt/γ-Al2O3催化剂。随着Pt负载量增大,催化剂孔容、孔径减小。粉体式催化剂性能优于整体式催化剂,但差别不大;Ce的添加有助于催化剂活性的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号