首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previously uncharacterized Saccharomyces cerevisiae open reading frame, YNR038W, was analyzed in the context of the European Functional Analysis Network. YNR038W encodes a putative ATP-dependent RNA helicase of the DEAD-box protein family and was therefore named DBP6 (DEAD-box protein 6). Dbp6p is essential for cell viability. In vivo depletion of Dbp6p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase labeling of pre-rRNA and steady-state analysis of pre-rRNA and mature rRNA by Northern hybridization and primer extension show that Dbp6p depletion leads to decreased production of the 27S and 7S precursors, resulting in a depletion of the mature 25S and 5.8S rRNAs. Furthermore, hemagglutinin epitope-tagged Dbp6p is detected exclusively within the nucleolus. We propose that Dbp6p is required for the proper assembly of preribosomal particles during the biogenesis of 60S ribosomal subunits, probably by acting as an rRNA helicase.  相似文献   

2.
Fzo1p is a novel component required for the biogenesis of functional mitochondria in the yeast Saccharomyces cerevisiae. The protein is homologous to Drosophila Fzo, the first known protein mediator of mitochondrial fusion. Deletion of the FZO1 gene results in a petite phenotype, loss of mitochondrial DNA, and a fragmented mitochondrial morphology. Fzo1p is an integral protein of the mitochondrial outer membrane exposing its major part to the cytosol. It is imported into the outer membrane in a receptor-dependent manner. Fzo1p is part of a larger protein complex of 800 kDa, and presumably is the first identified component of the yeast mitochondrial fusion machinery.  相似文献   

3.
Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP.  相似文献   

4.
The Saccharomyces cerevisiae gene, YFL017C, for a putative acetyltransferase was characterized. Disruption of YFL017C was lethal, leading to a morphology similar to those caused by the depletion of AGM1 or UAP1, the genes encoding phospho-N-acetylglucosamine mutase and UDP-N-acetylglucosamine pyrophosphorylase, respectively. This implies the involvement of YFL017C in UDP-N-acetylglucosamine synthesis. The recombinant protein for YFL017C displayed phosphoglucosamine acetyltransferase activities in vitro and utilized glucosamine 6-phosphate as the substrate. When incubated with Agm1p and Uap1p, the Yfl017c protein produced UDP-N-acetylglucosamine from glucosamine 6-phosphate. These results indicate that YFL017C specifies glucosamine-6-phosphate acetyltransferase; therefore, the gene was designated GNA1 (glucosamine-6-phosphate acetyltransferase). In addition, whereas bacterial phosphoglucosamine acetyltransferase and UDP-N-acetylglucosamine pyrophosphorylase activities are intrinsic in a single polypeptide, they are encoded by distinct essential genes in yeast. When the sequence of ScGna1p was compared with those of other acetyltransferases, Ile97, Glu98, Val102, Gly112, Leu115, Ile116, Phe142, Tyr143, and Gly147 were found to be highly conserved. When alanine was substituted for these amino acids, the enzyme activity for the substituted Phe142 or Tyr143 enzymes was severely diminished. Although the activity of Y143A was too low to perform kinetics, F142A displayed a significantly increased Km value for acetyl-CoA, suggesting that the Phe142 and Tyr143 residues are essential for the catalysis.  相似文献   

5.
The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells.  相似文献   

6.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

7.
Recent evidence suggests that the cost as well as the morbidity associated with the maintenance of hemodialysis access is increasing rapidly; currently, the cost exceeds 1 billion dollars and access related hospitalization accounts for 25% of all hospital admissions in the U.S.A. This increase in cost and morbidity has been associated with several epidemiological trends that may contribute to access failure. These include late patient referral to nephrologists and surgeons, late planning of vascular access as well as a shift from A-V fistulaes to PTFE grafts and temporary catheters, which have a higher failure rate. The reasons for this shift in the types of access is multifactorial and is not explained by changes in the co-morbidities of patients presenting to dialysis. Surgical preference and training also appear to play an important role in the large regional variation and patency rate of these PTFE grafts. We propose a program for early placement of A-V fistulae, a continuous quality improvement, multidisciplinary program to monitor access outcome, the development of new biomaterials, and a research plan to investigate pharmacological intervention to reduce development of stenosis and clinical interventions to treat those that do develop, prior to thrombosis.  相似文献   

8.
9.
The effects of chronic maternal administration of ethanol on nitric oxide synthase (NOS) activity and the numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons in the hippocampus of the near term fetal guinea pig at gestational day (GD) 62 were investigated. Pregnant guinea pigs received oral administration of 4 g ethanol/kg maternal body weight (n = 5), isocaloric sucrose/pair feeding (n = 5) or water (n = 5), or no treatment (NT; n = 5) from GD 2 to GD 61. NOS activity in the 25,000 x g supernatant of hippocampal homogenate was determined using a radiometric assay. The numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons were determined using NADPH diaphorase histochemistry and cresyl violet staining, respectively. The chronic ethanol regimen produced a maternal blood ethanol concentration of 193 +/- 13 mg/dl at 1 h after the second divided dose on GD 57. Chronic ethanol exposure produced fetal body, brain, and hippocampal growth restriction and decreased fetal hippocampal NOS activity compared with the isocaloric sucrose/pair feeding, water, and NT experimental groups, but did not affect the number of NOS containing and CA1 or CA3 pyramidal neurons. These data demonstrate that, in the near term fetus, chronic maternal administration of ethanol suppresses hippocampal NOS activity and consequent formation of NO, without loss of NOS containing neurons and prior to loss of CA1 pyramidal neurons that occurs in the adult.  相似文献   

10.
The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP-Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion-disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules.  相似文献   

11.
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.  相似文献   

12.
Wortmannin is a natural product that inhibits signal transduction. One target of wortmannin in mammalian cells is the 110-kDa catalytic subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We show that wortmannin is toxic to the yeast Saccharomyces cerevisiae and present genetic and biochemical evidence that a phosphatidylinositol 4-kinase (PI 4-kinase), STT4, is a target of wortmannin in yeast. In a strain background in which stt4 mutants are rescued by osmotic support with sorbitol, the toxic effects of wortmannin are similarly prevented by sorbitol. In contrast, in a different strain background, STT4 is essential under all conditions and wortmannin toxicity is not mitigated by sorbitol. Overexpression of STT4 confers wortmannin resistance, but overexpression of PIK1, a related PI 4-kinase, does not. In vitro, the PI 4-kinase activity of STT4, but not of PIK1, was potently inhibited by wortmannin. Overexpression of the phosphatidylinositol 4-phosphate 5-kinase homolog MSS4 conferred wortmannin resistance, as did deletion of phospholipase C-1. These observations support a model for a phosphatidylinositol metabolic cascade involving STT4, MSS4, and phospholipase C-1 and provide evidence that an essential product of this pathway is the lipid phosphatidylinositol 4,5-bisphosphate.  相似文献   

13.
Heat shock (25 degrees C to 37 degrees C for 30 min) acquisition of thermotolerance (at 50 degrees C) was observed in a yeast trehalose synthase mutant and the corresponding control strain. The acquisition of thermotolerance in the control strain was maintained for a significantly longer time than in the trehalose synthase mutant. The heat shock was associated with the synthesis of specific heat shock proteins and, in the case of the control strain, also trehalose accumulation. Inhibition of protein synthesis during the heat shock totally abolished acquisition of thermotolerance in both strains but not trehalose accumulation in the control. It was concluded that trehalose may only be required for prolonged stress protection while heat shock proteins are required for heat shock acquisition of thermotolerance.  相似文献   

14.
For decades, the fluid-filled lung has been a valuable research model for understanding normal and abnormal pulmonary physiology. It has lagged behind, however, as a useful therapeutic tool. Recently, the potential applications of perflubron's physicochemical and biologic properties have been realized. In animal models of several types of hypoxic respiratory failure, perflubron's efficacy in improving gas exchange and compliance has been demonstrated. Preliminary clinical studies of PLV in neonates who have RDS and CDH, and in children and adults who have ARDS have shown promise. Pivotal prospective, controlled studies have yet to be completed.  相似文献   

15.
16.
In metazoan cells, the CAS protein has been shown to function as a recycling factor for the importin-alpha subunit of the classical nuclear localization signal receptor, exporting importin-alpha from the nucleus to allow its participation in multiple rounds of nuclear import. CAS is a member of a family of proteins that bear homology to the larger subunit of the nuclear localization signal receptor, importin-beta, and that are found in all eukaryotes from yeast to humans. Sequence similarity identifies the product of the Saccharomyces cerevisiae CSE1 gene as a potential CAS homologue. Here we present evidence that Cse1p is the functional homologue of CAS: Cse1p is required to prevent accumulation of Srp1p/importin-alpha in the nucleus, it localizes to the nuclear envelope in a pattern typical of nuclear transport receptors, and it associates in vivo with Srp1p in a nucleotide-specific manner. We show further that mutations in CSE1 and SRP1 have specific effects on their association and on the intracellular localization of Cse1p.  相似文献   

17.
Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3(N205) mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD "active" site is under both positive and negative control mediated by multiple Sir3p domains.  相似文献   

18.
The Saccharomyces cerevisiae FLO1 gene encodes a large 1,536-amino-acid serine- and threonine-rich protein involved in flocculation. We have assessed the localization of Flo1p by immunoelectron microscopy, and in this study we show that this protein is located in the external mannoprotein layer of the cell wall, at the plasma membrane level and in the periplasm. The protein was also visualized in the endoplasmic reticulum and in the nuclear envelope, indicating that it was secreted through the secretory pathway. The protein was detected by Western blotting in cell wall extracts as a high-molecular-mass (>200 kDa) polydisperse material obviously as a result of extensive N and probably O glycosylation. Flo1p was extracted from cell walls in large amounts by boiling in sodium dodecyl sulfate, suggesting that it is noncovalently anchored to the cell wall network. The membranous forms of Flo1p were shown to be solubilized by phosphatidylinositol-phospholipase C treatment, suggesting that Flo1p is glycosyl phosphatidylinositol (GPI) anchored to this organelle. The expression of truncated forms with the hydrophobic C-terminal domain deleted led to the secretion of the protein in the culture medium. The hydrophobic C terminus, which is a putative GPI anchoring domain, is therefore necessary for the attachment of Flo1p in the cell wall. Deletion analysis also revealed that the N-terminal domain of Flo1p was essential for cellular aggregation. On the whole, our data indicate that Flo1p is a true cell wall protein which plays a direct role in cell-cell interaction.  相似文献   

19.
Yeasts have three functionally redundant G1 cyclins required for cell cycle progression through G1. Mutations in GIN4 and CLA4 were isolated in a screen for mutants that are inviable with deletions in the G1 cyclins CLN1 and CLN2. cln1 cln2 cla4 and cln1 cln2 gin4 cells arrest with a cytokinesis defect; this defect was efficiently rescued by CLN1 or CLN2 expression. GIN4 encodes a protein with strong homology to the Snflp serine/threonine kinase. Cla4p is homologous to mammalian p21-activated kinases (PAKs) (kinases activated by the rho-class GTPase Rac or Cdc42). We developed a kinase assay for Cla4p. Cla4p kinase was activated in vivo by the GTP-bound form of Cdc42p. The specific activity of Cla4p was cell cycle regulated, peaking near mitosis. Deletion of the Cla4p pleckstrin domain diminished kinase activity nearly threefold and eliminated in vivo activity. Deletion of the Cla4p Cdc42-binding domain increased kinase activity nearly threefold, but the mutant only weakly rescued cla4 function in vivo. This suggests that kinase activity alone is not sufficient for full function in vivo. Deletion of the Cdc42-binding domain also altered the cell cycle regulation of kinase activity. Instead of peaking at mitosis, the mutant kinase activity exhibited reduced cell cycle regulation and peaked at the G1/S border. Cla4p kinase activity was not reduced by mutational inactivation of gin4, suggesting that Gin4p may be downstream or parallel to Cla4p in the regulation of cytokinesis.  相似文献   

20.
Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号