首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Mayonnaises are viscoplastic oil‐in‐water emulsions, in which rheological properties have important influences on functional properties and the sensory quality. A set of 17 samples of both traditional and light mayonnaises were tested at 10 and 25 °C, using a rheoviscometer Rotovisco RT 10. Nonlinear relations were observed between the yield value and the apparent viscosity. The yield value was correlated with several sensory characteristics rated after manipulation with a spoon, but not in oral testing. No relations were obtained between the apparent viscosity and sensory characteristics. The yield value and the texture acceptability were related significantly to the flavour acceptability. Multivariate statistical techniques were found advantageous for improving the prediction of the texture acceptance.  相似文献   

2.
The effects of cholesterol on droplet size distribution and rheological properties of cholesterol-reduced egg yolk-stabilized emulsions were determined. Oil-in-water emulsions were prepared by using spray-dried eggs submitted to different levels of cholesterol reduction (14–81 wt% of cholesterol removed). Cholesterol was extracted in a modified Jennings apparatus with subcritical CO2 (9°C and 4.66·106 Pa). Oscillatory and steady flow tests, as well as droplet size distribution measurements, were carried out on the cholesterol-reduced egg yolk-stabilized emulsions. The rheological parameters increased with the level of cholesterol reduction up to 40–80 wt% for emulsions having the same total amount of egg yolk. Opposite results, however, were obtined with some emulsions stabilized by a highly cholesterol-reduced (≈80 wt%) egg yolk. These results were explained by taking into account two opposite phenomena: an increase in the concentration of surface-active agents as cholesterol content decreased, and a lipoprotein structural rearrangement induced by cholesterol removal.  相似文献   

3.
Viscoelastic properties of mayonnaise and Italian salad dressing prepared with olive oil and enzymatically synthesized structured lipid (SL) from caprylic acid and olive oil were studied using an SR5000 dynamic stress rheometer. Storage modulus (G′) and loss modulus (G″) were determined as functions of frequency, temperature, and stress. Frequency sweeps did not show significant differences between dressings prepared with olive oil or SL. For all mechanical spectra, G′ values were consistently higher than G″ values. Both Italian dressing and mayonnaise samples displayed similar gel-like characteristics. Mayonnaise and Italian dressings made with olive oil separated when they were brought to room temperature from refrigeration temperatures. SL-based mayonnaise did not separate. Only minor separation was observed in SL-based Italian dressing. A change in the crystallization properties of the two oils was probably responsible for the differences observed after refrigeration. Both SL-based and unmodified olive oil-based mayonnaise and Italian dressing samples had similar viscoelastic character.  相似文献   

4.
Freezing is an efficient method of fish preservation. The aim of the present work was to examine the impact of freezing in fatty acid composition and in the in vitro inhibitory activity of sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) fillet lipids against platelet activating factor (PAF). The Bligh and Dyer extraction method and the counter‐current distribution method were used to obtain total, polar and neutral lipids. The fatty acid analysis conducted using the internal standard method and the biological assay on washed rabbit platelets took place calculating the in vitro inhibitory activity of fish lipids against 2.5 × 10?11 M of PAF. No statistical changes (p<0.05) occurred in fatty acid content of fresh and thawed gilthead sea bream, while fatty acid amount in thawed sea bass was significantly higher (p<0.05) compared to fresh fish. Total lipids of both thawed fish species exhibited stronger anti‐thrombotic activity compared to fresh fish. Freezing preserved fish quality and reinforced the anti‐thrombotic properties of fish oils, since even after 6 months of freezing, fish oils preserve their nutritional value in terms of protecting against cardiovascular diseases. Practical applications: Fish fillets contain high amount of unsaturated lipids that may easily undergo lipid oxidation. Freezing and frozen storage prevent such oxidative changes so fish quality is retained. Fatty acids and PAF‐antagonists in fish are of major importance since they contribute to the nutritional value of fish. The practical application of this work lies on the evaluation of the nutritional value of fish in terms of cardio protection by examining the impact of freezing on the levels of fatty acids and PAF‐antagonists in aquacultured fish fillets.  相似文献   

5.
6.
Polyethylene blends with bimodal molecular weight distribution were prepared by blending a high molecular weight polyethylene and a low molecular weight polyethylene in different ratios in xylene solution. The blends and their components were characterized by the high temperature gel permeation chromatograph (GPC), different scanning calorimetry (DSC), and small amplitude oscillatory shear experiments. The results showed that the dependence of zero‐shear viscosity (η0) on molecular weight followed a power law equation with an exponent of 3.3. The correlations between characteristic frequency (ω0) and polydispersity index, and between dynamic cross‐point (Gx) and polydispersity index were established. The complex viscosity (η*) at different frequencies followed the log‐additivity rule, and the Han‐plots were independent of component and temperature, which indicated that the HMW/LMW blends were miscible in the melt state. Moreover, the thermal properties were very similar to a single component system, suggesting that the blends were miscible in the crystalline state. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this study, the changes in the rheological curves of polyvinyl chloride (PVC) plastisols with increasing storage time and the factors affecting these changes were studied. The results show that with increasing storage time, all the “viscosity–temperature” and “viscosity–time” rheological curves of PVC plastisols exhibit nonnormal distribution change trends, that is, the viscosity first decreases, and then changes from slow increasing to rapid increasing, forming a shoulder peak, reaches to the maximum value and gradually decreases. With increasing storage time, the complex viscosities of PVC plastisols increased generally in the first, the second, and the fourth stages, and the gelation process shortened in the third stage. The first and second stages of the viscosity changes reflect the “time–temperature” equivalence principle of PVC plastisol in suspension stage. However, the maximum viscosity of PVC plastisol corresponding to temperature max does not change with increasing storage time.  相似文献   

8.
Poly(butylene terephthalate)–clay nanocomposites with three different organically modified clays were prepared via melt blending in a twin‐screw extruder. Decyl triphenylphosphonium bromide, hexadecyl triphenylphosphonium bromide, and cetyl pyridinium chloride were used to modify the naturally occurring montmorillonite clay. The organically modified clays were characterized with X‐ray diffraction for the d001‐spacing and with thermogravimetric analysis to determine the thermal stability. The prepared nanocomposites were injection‐molded and examined for the dispersion quality of the clay, the mechanical properties, and the rheological behavior. The tensile strength of the nanocomposites increased with a 1% addition of clay; however, more clay decreased the tensile strength. Nanocomposites with finely dispersed clay platelets and nanocomposites with poorly dispersed clay platelets showed very different rheological behaviors. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Three types of maleated polypropylene–layered silicate nanocomposites with different dispersion states of layered silicate (deintercalated, intercalated, and exfoliated states) are prepared from two kinds of polypropylenes with different molecular weights, organically modified layered silicate and pristine montmorillonite to investigate the effect of the final morphology of the nanocomposite on the rheological and mechanical properties. Maleated polypropylene with high molecular weight intercalates slowly and the other with low molecular weight exfoliates fast into the organophilic layered silicates. Rheological properties such as oscillatory storage modulus, nonterminal behavior, and relative viscosity has close relationship with the dispersion state of layered silicates. The exfoliated nanocomposite shows the largest increase and the deintercalated nanocomposite shows almost no change in relative shear and complex viscosities with the clay content. The exfoliated nanocomposite shows the largest drop in complex viscosity due to shear alignment of clay layers in the shear flow. In addition, the final dispersion state of layered silicates intimately relates to the mechanical property. The dynamic storage moduli of nanocomposites show the same behavior as the relative shear and complex viscosities. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1526–1535, 2003  相似文献   

10.
Insertion of 2:1 organo-modified phyllosilicate tactoids into rheologically tough thermoplastics has extraordinary potential candidate in oxygen permeability and microstructural toughening. Herein, two commercially abundant clays have been taken for improvement of the thermoplastic's gas barrier property in reasonably low loading. The cause of low loading has been accounted to the usage of maleated polyethylene (MA-g-PE) during the melt mixing tenure. The optimized nanocomposite compression molded film has been tested against uniaxial stretching, which showed a negligible change in the residual permanent set with sacrificing the elongation at break feature. Moreover, nanoindentation was also performed to get the hardness of the sample surface. The flow behavior of the nanocomposites showed thixotropic likely with increasing the frequency. Oxygen transmission rate (OTR) has significantly decreased for tallow amine-modified nanoclay system (cloisite 15A) in comparison to cloisite Na+ providing 'tortoise path' formation inside the matrix. Thus, hitherto, the work could demonstrate and provide the information of comparative studies between organo-clay and simple phyllosilicates, which could be remediation of the loopholes in mechanical toughening and gas barrier lineaments.  相似文献   

11.
This contribution reports the development of 30 wt % d ‐limonene‐in‐water emulsions formulated with a biopolymer (gellan gum) as stabilizer and prepared with a high‐pressure homogenizer. The role as emulsifiers of different ratios of amphiphilic copolymers (AtlasTMG5000 and AtloxTM4913) was assessed. The results indicated that the ratio of emulsifiers had significant effect on the physical stability, droplet size, viscoelasticity, and viscosity of these emulsions. The mean droplet diameters decreased as AtlasTMG5000 concentration increased from 1 wt % to 3 wt %. The aging of emulsions resulted in an increase in the size of droplets for the emulsions containing high AtloxTM4913 copolymer content. An increase of AtlasTMG5000 enhanced both the G′ and G″ values and the viscosity providing higher stability to emulsions. Gellan gum caused in viscoelastic moduli weaker frequency dependence at the lower frequencies, according to the formation of a faint gel‐like matrix. All emulsions exhibited shear thinning flow properties that fitted the power‐law equation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43838.  相似文献   

12.
The effects of ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and three types of organoclays (Cloisite® 15A, 25A, and 30B) on mechanical and rheological properties, and morphology of impact modified polyamide-6/montmorillonite ternary nanocomposites were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), parallel disk rheometry, melt flow index measurements, and tensile and impact tests. The materials were prepared by melt blending using a co-rotating twin-screw extruder. XRD and TEM analyses showed that exfoliated-intercalated nanocomposites were formed in both polyamide-6/Cloisite® 25A and Cloisite® 30B binary nanocomposites and in ternary systems. SEM micrographs showed that rubber domain sizes were larger in the nanocomposites than in their corresponding polyamide-6/elastomer blends. Generally, tensile strength, Young's modulus, and elongation at break decreased with the addition of elastomer to polyamide-6/organoclay binary nanocomposites. In the melt state, liquid-like behavior of polyamide-6 slightly turned to pseudo solid-like in the binary and ternary nanocomposites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The influence of morphology of glass-bead-filled isotactic polypropene containing 0–20 vol% thermoplastic elastomers (TPE) on mechanical and rheological properties was investigated. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene(SEBS) and the corresponding block copolymer grafted with maleic anhydrid (SEBS-g-MA) were used as thermoplastic elastomers, realizing, in the first case, a three-phase morphology with separately dispersed glass beads and SEBS particles. In the second case, SEBS-g-MA forms an elastomeric interlayer between glass beads and polypropene matrix, comprising core–shell particles. Young's modulus and tensile yield stress of the hybrid composites decrease with an increase in TPE volume fraction due to low stiffness and strength of TPE. In comparison with the three-phase morphology of hybrid composites with SEBS, SEBS-g-MA interlayers effect a reduced stiffness of the hybrid composites but improve interfacial adhesion and, thus, tensile yield stress. Rheological storage and loss moduli increase with an increase in glass bead and TPE volume fraction. Due to improved interfacial adhesion, melt elasticity and viscosity are enhanced by the SEBS-g-MA interlayer when compared with separately dispersed SEBS. Consequently, the reduced stiffening effect of the glass beads due to SEBS-g-MA interlayer decreases mechanical elasticity, whereas improved interfacial adhesion, also promoted by the SEBS-g-MA interlayer, enhances tensile yield stress and melt elasticity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2499–2506, 1998  相似文献   

14.
In this study, nanocomposites of acrylonitrile butadiene rubber (NBR)/phenolic resin/graphene nanoparticles (GNPs) were prepared using a two-roll mill. According to the results, the addition of GNPs increased the scorch time, vulcanization time, and viscosity of the blends. By adding phenolic resin and in the presence of a higher percentage of acrylonitrile, the modulus and tensile strength increased and the elongation at break decreased. The mechanical properties of the nanocomposites improved with increasing the amount of nanoparticles. The addition of 1.5 phr GNP to the blends containing NBR with 33% and 45% acrylonitrile increased the tensile modulus by 56% and 49%, respectively. The tensile properties of the nanocomposites were also investigated at 50, 25, and 75°C. It was observed that with increasing the amount of nanoparticles, the deterioration of the mechanical properties at elevated temperatures was reduced. Also, thermal stability increased with increasing the amount of nanoparticles in all the samples.  相似文献   

15.
The exudate polysaccharide from Sterculia striata trees was investigated regarding its composition, structure and rheological properties and metal ion interactions. This polysaccharide contains galactose, rhamnose galacturonic and glucuronic acids as the main monosaccharide components. 13C NMR spectroscopy revealed that the anomeric composition is similar to that of Sterculia urens exudates, except for the presence of xylose, not identified in the latter polysaccharide. The empirical stiffness parameter B was determined for S striata (B = 0.043), suggesting that the polysaccharide exists in a semi‐rigid chain conformation, with no conformational change being demonstrated. Deacetylation led to a more flexible polymer chain (B = 0.058). The counter ion affinity of the polysaccharide aqueous solution was determined by intrinsic viscosity measurements, resulting in Al3+ > Ca2+ > Na+. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
纳米PVC树脂结构性能与流变学特征   总被引:3,自引:2,他引:1  
发明了纳米CaCO3与氯乙烯在工业装置上的原位聚合方法。国内现已有27台30m^3以上聚合釜在生产以化学建材为主要市场的纳米PVC树脂。介绍了纳米PVC树脂的颗粒结构特征,并对其热性能、力学和流变性能进行了研究。  相似文献   

17.
研究了胶粉及活化胶粉胶料的加工流变性能。结果表明,胶人及活化胶粉的加入均能缩短胶料的硫化时间,对硫化速度影响不大;采用素炼法及共素炼法均可明显提高活化胶粉胶料硫化胶的物理机械性能;随活化胶粉用量的增加,炭黑共混胶料的粘度变化不大,挤出胀大比减小。  相似文献   

18.
Ethylene‐octene copolymer (EOC) was irradiated using electron beam irradiation at different dosages (30, 60, 90, and 120 kGy). Effect of irradiation dosage on thermal and mechanical properties was studied. When compared to low density polyethylene, EOC exhibited higher degree of crosslinking reflected in increased gel content, higher elastic modulus (G′), and lower tan δ obtained by rheology measurement at 150°C. Crosslinking caused improvement in high‐temperature creep and room temperature and also elevated temperature elastic properties. Differential scanning calorimetry revealed that e‐beam irradiation has caused a gradual reduction in crystallinity and a presence of a fraction with higher melting temperature. In the case of EOC, as the extent of crosslinking increased, stress at break showed an increasing trend whereas irradiation dosage had an inverse effect on elongation at break. Radiation dosage has positive effect on thermal stability estimated by thermogravimetric analysis. After 30 min of thermal degradation at 220°C, slightly higher C?O peak for crosslinked sample was found by Fourier transform infrared spectroscopy while for room temperature samples no C?O peak was detected. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Incorporation of biofillers in polymeric hydrogels has continued to receive great attention in recent times because of their excellent properties. In this study, polyacrylamide (PAM) and polyethyleneimine (PEI) were used to develop novel composite hydrogels filled with date seed powder (DSP) via chemical crosslinking technique. Pristine PAM/PEI hydrogel and PAM/PEI‐DSP hydrogels at various DSP loadings were fabricated and subjected to gelation at 40°C for 24 h. The impact of various DSP loadings on the hydrogel samples developed was investigated using hybrid rheometer, SEM, XRD, and FTIR instruments, respectively. Rheological measurements confirmed the viscoelastic responses of the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels reinforced with various DSP contents (0.8, 2.4, and 4 wt %). The dynamic strain, dynamic frequency and time sweep tests demonstrated that PAM/PEI‐DSP hydrogels were slightly more elastic than the virgin PAM/PEI hydrogel. The SEM characterization revealed the surface micrographs of the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels at different DSP loadings to be smooth, homogeneous, and dense. Besides, the SEM micrographs supported the incorporation of DSP in the PAM/PEI‐DSP hydrogel samples. XRD analysis showed that the structures of neat PAM/PEI hydrogel and PAM/PEI‐DSP hydrogels filled with various DSP contents were predominantly amorphous while FTIR results confirmed the functional groups and evidence of crosslinking in the neat PAM/PEI hydrogel and the PAM/PEI‐DSP hydrogels embedded with different DSP contents. It is believed that these new hydrogels have huge development potentials and promising future in wastewater treatment and removal of heavy metal ions in aqueous solutions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42110.  相似文献   

20.
A new quaternized polysulfone with triphenylphosphonium pendant groups was synthesized by reacting chloromethylated polysulfone with triphenylphosphine. The molecular restructurations, generated by hydrogen bonding, electrostatic interactions, and association phenomena in ternary quaternized polysulfone/N,N‐dimethylformamide (solvent)/water (nonsolvent) systems, were evaluated by rheological investigations. The polyelectrolyte effect, induced by enhanced dissociation of the ionizable groups and by mixed solvents' quality, modify the rheological functions, that is, dynamic viscosity, elastic shear modulus, and viscous shear modulus, as well as the thermodynamic parameters obtained from the rheological properties, such as apparent activation energy. These results were correlated with the morphological properties of the films obtained from solutions in solvent/nonsolvent mixtures and compared with other quaternized polysulfones, having different hydrophobic characteristics. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号