共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。 相似文献
3.
针对碳电极材料存在比电容小、能量密度低的问题,采用异质成核合成路径制备了新型的碗状空心碳微球,进一步以尿素为氮源,通过水热法制备了高性能氮掺杂碗状空心碳微球。采用X射线衍射仪、场发射扫描电子显微镜、能谱仪、傅立叶红外光谱仪和X射线光电子能谱分析仪对碗状空心碳微球和氮掺杂碗状空心碳微球的形貌及结构进行表征,并分析了氮掺杂对碗状空心碳微球的电化学性能。实验结果表明:氮掺杂对碗状空心碳微球的电化学性能有显著的改善,在1 A/g的电流密度下,氮掺杂碗状空心碳微球的比电容(235.5 F/g)远高于碗状空心碳微球的比电容(121.0 F/g),此外,氮掺杂碗状空心碳微球在3 A/g的电流密度下循环5 000次后,其比电容保持率为78.3%。 相似文献
4.
通过改进的Hummers法制备氧化石墨烯(GO),以GO做稳定剂,甲基丙烯酸甲酯(MMA)为油相,制备了Pickering乳液,并研究了GO浓度、水相pH值对其稳定性的影响;通过加入引发剂成功进行了Pickering乳液聚合制备PMMA/GO复合微球,利用透射电镜对该复合微球的微观结构进行了表征。研究表明,GO稳定的Pickering乳液相比于SDBS稳定的普通乳液,液滴粒径更小且分散性更好;GO浓度对Pickering乳液的稳定性影响不大,但随其浓度的增加,Pickering乳液液滴尺寸变小,液滴更为分散;酸性连续相更有利于GO在油水界面的吸附而形成稳定的Pickering乳液,随着pH值增大,液滴尺寸逐渐变大,但碱性条件下乳液无法稳定存在;乳液聚合产物形貌为PMMA颗粒由GO片均匀包覆形成的复合微球,尺寸分布约200 nm左右。 相似文献
5.
6.
7.
8.
石墨烯独特的结构使其具有优异的电、光、热、强度等物理性质,是“后硅时代”的新潜力材料,因具有巨大的应用前景而成为研究的热点.首先对近10多年来国内外石墨烯的研究现状进行了简要分析,然后详细介绍了石墨烯的主要制备方法、原理、各自的特征及其应用前景,重点综述了石墨烯在超级电容器电极材料中的应用研究,最后就目前石墨烯及其在超级电容器中的应用研究的关键问题提出了个人看法和一些建议. 相似文献
9.
超级电容器聚苯胺/活性中间相炭微球复合电极材料的研究 总被引:1,自引:0,他引:1
以具有高比表面积的活性中间相活性碳微球(a-MCMB)、苯胺(ANI)为主要原料,过硫酸铵为氧化剂,通过原位化学聚合法在a-MCMB表面沉积聚苯胺(PANI),首次制得纳米PANI/a-MCMB新型复合材料,通过XRD、SEM对样品的晶型结构和表面形貌进行表征,并将得到的复合材料组装成超级电容器,用循环伏安、交流阻抗、恒流充放电以及循环性能测试技术对该材料进行电化学测试。结果显示,在1MH2SO4溶液中,复合材料的比容量达到288.46F/g。 相似文献
10.
11.
目的 三维石墨烯在实际应用中所呈现的性能与其理论模拟结果相差甚远,目前尚无系统的原因分析和改进方法总结,回顾三维石墨烯的发展历程及近几年国内外研究进展是必要的,为三维石墨烯在工业设计和生产制备超级电容器电极活性材料中的应用提供参考.方法 综述三维石墨烯的制备方法,阐述其在超级电容器中应用的研究,针对三维结构塌陷问题的解决办法、杂原子掺杂提高材料整体比电容及石墨烯基电容器的理论模拟等方面进行总结.结果 三维石墨烯的制备方法主要有自组装法和模板法,自组装法还原度普遍较低,电容值一般为100~300 F/g;模板法制备的石墨烯比表面积可达500 m2/g以上;多元素掺杂体系在高电流密度下的电容保持率普遍不足80%;关于分级多孔结构的理论模拟研究不足.结论 制备分级多孔结构的三维石墨烯、多元素掺杂体系理论研究、非对称超级电容器的研究及应用将受到学者的关注. 相似文献
12.
13.
石墨烯因具有独特的二维晶体结构而具备优异的电学、光学、力学、热学等性能,成为全世界科研工作者研究的热点。介绍了超级电容器储能原理,对石墨烯在超级电容器中的应用和其复合电极材料的发展进行了综述和展望。 相似文献
14.
15.
16.
通过水热法从生物质废料玉米秸秆中制备表面光滑的碳微球(CMs),并首次将未经碳化或活化的生物质碳微球作为间隔物插入石墨烯片层中合成CMs/rGO复合水凝胶。碳微球在抑制石墨烯片层团聚的同时,可以提高材料的亲水性和表面相容性。基于此复合材料组装的无粘结剂对称型超级电容器表现出良好的双电层电容(0.3A/g时264.1F/g),出色的倍率性能(10A/g电流密度下电容保持率为81.5%),以及优秀的循环稳定性(10A/g下循环10000次,电容保持率为95.6%)。 相似文献
17.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化学性能。结果表明,以PANI-SDBS、PANI-T-X100为电极材料的超级电容器在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。 相似文献
18.
采用水热法制备Ni_2CoS_4活性材料,通过物理过程和水热反应将其与氧化石墨烯(GO)、水热多孔氧化石墨烯(HHGO)复合得到Ni_2CoS_4/还原氧化石墨烯/多孔还原氧化石墨烯(Ni_2CoS_4/RGO/HRGO)复合电极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安测试、恒流充放电测试和交流阻抗测试等,对复合材料的形貌结构、电化学性能进行了表征。研究结果表明:在1 A/g的电流密度下,其比电容为1 684 F/g,在5 A/g的电流密度下循环2 000次后,其比电容保持率为91.8%。Ni_2CoS_4/RGO/HRGO优良的电化学行为归因于这种复合结构使电解液对电极材料的润湿程度提高,进而提高了离子和电荷的传输速率,同时也缓解石墨烯、Ni_2CoS_4的团聚和循环过程中的体积变化。因此,Ni_2CoS_4/RGO/HRGO是一种有良好应用前景的高性能超级电容器电极材料。 相似文献
19.
三维(3D)石墨烯及其复合材料具有柔韧性好、比表面积大、功率密度高、力学性能稳定以及离子传输迅速等优良性能,成为材料科学领域备受关注的材料。概述了三维石墨烯材料的基本性质和性能,并对其多元复合材料的制备方法以及在超级电容器储能材料方面的应用研究进展进行了评述。三维(3D)石墨烯常用的制备方法有自组装法、模板导向法和3D打印法等,通过对制备方法进行改进,可以有效调控三维材料的多孔结构、孔径、柔韧性和电子传递速度等性能。三维(3D)石墨烯与过渡金属化合物及导电聚合物复合而成的多元复合物在超级电容器电极材料方面表现出广阔的应用前景。 相似文献
20.
通过原位化学聚合制备了不同形貌的纳米炭材料(炭黑,碳纳米管及石墨烯纳米片)/聚苯胺复合电极材料.分析表明:石墨烯/聚苯胺复合材料相比于炭黑/聚苯胺、碳纳米管/聚苯胺复合物及纯聚苯胺,具有产率和比容量高,内阻低及明显提高的循环稳定性和倍率性能.石墨烯/聚苯胺复合材料更好的电化学性能归因于:(a)二维平面结构石墨烯有利于大量聚苯胺在其表面均匀沉积及更多的活性位使聚苯胺和电解液离子接触,从而有利于聚苯胺得失电子促使氧化还原反应的顺利进行;(b)石墨烯间的面接触有利于构建电子的快速传输网络使电极材料具有更低的电阻;(c)石墨烯及聚苯胺层层堆叠结构具有柔性包覆限制作用,可有效防止聚苯胺在充放电过程中因膨胀和收缩而从石墨烯表面脱离. 相似文献