首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic hole-transport layers (HTLs) are widely investigated in perovskite solar cells (PSCs) due to their superior stability compared to the organic HTLs. However, in p–i–n architecture when these inorganic HTLs are deposited before the perovskite, it forms a suboptimal interface quality for the crystallization of perovskite, which reduces device stability, causes recombination, and limits the power conversion efficiency of the device. The incorporation of an appropriate functional group such as sulfur-terminated surface on the HTL can enhance the interface quality due to its interaction with perovskite during the crystallization process. In this work, a bifunctional Al-doped CuS film is wet-deposited as HTL in p–i–n architecture PSC, which besides acting as an HTL also improves the crystallization of perovskite at the interface. Urbach energy and light intensity versus open-circuit voltage characterization suggest the formation of a better-quality interface in the sulfide HTL–perovskite heterojunction. The degradation behavior of the sulfide-HTL-based perovskite devices is studied, where it can be observed that after 2 weeks of storage in a controlled environment, the devices retain close to 95% of their initial efficiency.  相似文献   

2.
Strain and temperature are important physiological parameters for health monitoring, providing access to the respiration state, movement of joints, and inflammation processes. The challenge for smart wearables is to unambiguously discriminate strain and temperature using a single sensor element assuring a high degree of sensor integration. Here, a dual-mode sensor with two electrodes and tubular mechanically heterogeneous structure enabling simultaneous sensing of strain and temperature without cross-talk is reported. The sensor structure consists of a thermocouple coiled around an elastic strain-to-magnetic induction conversion unit, revealing a giant magnetoelastic effect, and accommodating a magnetic amorphous wire. The thermocouple provides access to temperature and its coil structure allows to measure impedance changes caused by the applied strain. The dual-mode sensor also exhibits interference-free temperature sensing performance with high coefficient of 54.49 µV °C−1, low strain and temperature detection limits of 0.05% and 0.1 °C, respectively. The use of these sensors in smart textiles to monitor continuously breathing, body movement, body temperature, and ambient temperature is demonstrated. The developed multifunctional wearable sensor is needed for applications in early disease prevention, health monitoring, and interactive electronics as well as for smart prosthetics and intelligent soft robotics.  相似文献   

3.
The rapid development of electronic skins has allowed novel multifunctional human–machine interaction interfaces, especially in motion interaction sensors. Although motion sensing is widely used in advanced flexible electronic devices through the integration of single sensing units, the number of electrodes has increased with the increase in integration by the square multiple. This paper presents a self-powered electronic skin based on the Archimedes spiral structure design, which can detect the multi-directional movement of the slider without external energy supply. As the rotation angle of the Archimedes spiral increases from 2π to 4π, the maximum resolvable movement direction of the device increases from 24 to 280, and the number of electrodes is kept at 4. Through the exploration of the principle of triboelectricity, the inherent electronegativity of the triboelectric materials is used as the basis for signal discrimination, which not only increases the reliability of the device, but also solves the problem of energy supply during device operation. A reduced number of electrodes and its battery-free nature enables this electronic skin to be easily integrated into portable electronic devices, such as laptops, smart phones, healthcare devices, etc.  相似文献   

4.
Vanadium oxides (VOx) feature the potential for high-capacity Zn2+ storage, which are often preintercalated with inert ions or lattice water for accelerating Zn2+ migration kinetics. The inertness of these preintercalated species for Zn2+ storage and their incapability for conducting electrons, however, compromise the capacity and rate capability of VOx. Herein, Ni-BTA, a 1D conductive metal–organic framework (c-MOF), is intercalated into the interlayer space of VOx by coordinating organic ligands with preinserted Ni2+. The intercalated Ni-BTA improves the conductivity of VOx by π–d conjugation, facilitates Zn2+ migration by enlarging its interlayer spacing, and stabilizes the crystal structure of VOx as interlayer pillars, thus simultaneously enhancing the material's rate capability and cycling stability. Meanwhile, a dual reaction mechanism of Zn2+ storage, i.e., the redox of V5+/V3+ in VOx and the rearrangement of chemical bonds (CN/C N) in Ni-BTA, collaboratively contributes to an enhanced capacity. Consequently, this Ni-BTA-intercalated VOx material exhibits a high Zn2+ storage capacity of 464.2 mAh g−1 at 0.2 A g−1 and an excellent rate capability of 272.5 mAh g−1 at 5 A g−1. This work provides a general strategy for integrating c-MOFs with inorganic cathode materials to achieve high-capacity and high-rate performance.  相似文献   

5.
The current research of Li–S batteries primarily focuses on increasing the catalytic activity of electrocatalysts to inhibit the polysulfide shuttling and enhance the redox kinetics. However, the stability of electrocatalysts is largely neglected, given the premise that they are stable over extended cycles. Notably, the reconstruction of electrocatalysts during the electrochemical reaction process has recently been proposed. Such in situ reconstruction process inevitably leads to varied electrocatalytic behaviors, such as catalytic sites, selectivity, activity, and amounts of catalytic sites. Therefore, a crucial prerequisite for the design of highly effective electrocatalysts for Li–S batteries is an in-depth understanding of the variation of active sites and the influence factors for the in situ reconstruction behaviors, which has not achieved a fundamental understanding and summary. This review comprehensively summarizes the recent advances in understanding the reconstruction behaviors of different electrocatalysts for Li–S batteries during the electrochemical reaction process, mainly including metal nitrides, metal oxides, metal selenides, metal fluorides, metals/alloys, and metal sulfides. Moreover, the unexplored issues and major challenges of understanding the reconstruction chemistry are summarized and prospected. Based on this review, new perspectives are offered into the reconstruction and true active sites of electrocatalysts for Li–S batteries.  相似文献   

6.
A new modulation scheme is proposed in this paper. This scheme uses sinusoidal chip waveforms to shape the spectrum of a direct sequence spread spectrum (DS-SS) signal such that the transmitted signal has two distinct spectral lobes, one from a lower sideband (LSB) and the other from an upper sideband (USB). By properly selecting the frequency of the sinusoidal chip waveforms, the two sideband signals can be made to undergo independent fading in a dispersive fading channel. These two independent sideband signals, when combined at the receiver, provide diversity gain. Our analysis and simulation results show that the bit error ratio (BER) performance of the proposed scheme is superior to that of the equivalent DS-SS system that uses conventional rectangular chip waveforms for severely faded channels.  相似文献   

7.
The significant demand of sustainable power sources has been triggered by the development of wearable electronics (e.g., electronic skin, human health monitors, and intelligent robotics). However, tensile strain limitation and low conformability of existing power sources cannot match their development. Herein, a stretchable and shape-adaptable liquid-based single-electrode triboelectric nanogenerator (LS-TENG) based on potassium iodide and glycerol (KI-Gly) liquid electrolyte as work electrode is developed for harvesting human motion energy to power wearable electronics. The LS-TENG demonstrates high output performances (open-circuit voltage of 300 V, short-circuit current density of 17.5 mA m–2, and maximum output power of 2.0 W m–2) and maintains the stable output performances without deterioration under 250% tension stretching and after 10 000 cycles of repeated contact-separation motion. Moreover, the LS-TENG can harvest biomechanical energy, including arm shaking, human walking, and hand tapping, to power commercial electronics without extra power sources. The LS-TENG attached on different joints of body enables to work as self-powered human motion monitor. Furthermore, a flexible touch panel based on the LS-TENG combined with a microcontroller is explored for human–machine interactions. Consequently, the stretchable and shape-adaptable LS-TENG based on KI-Gly electrolyte would act as an exciting platform for biomechanical energy harvesting and wearable human–machine interaction.  相似文献   

8.
Lithium–sulfur (Li–S) batteries have high theoretical energy density and are regarded as next-generation batteries. However, their practical energy density is much lower than the theoretical value. In previous studies, the increase of the areal capacity of the cathode and the decrease of the negative/positive ratio can be well achieved, yet the energy density shows no corresponding increase. The main reason is the difficulty in decreasing electrolyte dosage because lean electrolyte inevitably causes the deterioration of reaction kinetics and sulfur utilization. Thus, the electrolyte/active material ratio in the reported works is usually higher than 10 µL mg−1, much higher than that in Li-ion batteries (usually lower than ≈0.3 µL mg−1 for cathode). Although many works have focused on this topic, a systematic discussion is still rare. This review systematically discusses the key challenges and solutions for assembling high-performance lean-electrolyte Li–S batteries. First, the key challenges arising from lean-electrolyte conditions are discussed in detail. Then, the approaches and the recent progress to reduce electrolyte usage, including optimization of electrode porosity and ion conduction, the introduction of electrocatalysis, exploration of new active materials, electrolyte regulation, and Li metal protection are reviewed. Finally, future research directions in lean-electrolyte Li–S batteries are proposed.  相似文献   

9.
This paper consider the power allocation strategies in the cognitive radio (CR) system in the presence of channel estimation errors. As the user has different channel condition in CR systems, different amount of power resource is required to meets the QoS request. In order to guarantee the fairness of each CR user, ensure the interference from the primary user and other CR users meet the QoS requirement of the CR user and limit the interference that is caused by CR users on primary user within the range into the level that primary user can tolerate, we proposed some new power allocation schemes. The targets are to minimize the maximum power allocated to CR users, to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all CR users and to minimize the maximum outage probability over all CR users. The first power allocation scheme can be formulated using Geometric Programming (GP). Since GP problem is equivalent to the convex optimization problem, we can obtain the optimal solutions for the first scheme. The latter two power allocation schemes are not GP problems. We propose iterative algorithms to solve them. Simulation results show that proposed schemes can efficiently guarantee the fairness of CR users under the QoS constraint of the primary user and CR users.  相似文献   

10.
The voids formed in the Ni3P layer during reaction between Sn-based solders and electroless Ni–P metallization is an important cause of rapid degradation of solder joint reliability. In this study, to suppress formation of the Ni3P phase, an electrolessly plated Ni–Sn–P alloy (6–7 wt.% P and 19–21 wt.% Sn) was developed to replace Ni–P. The interfacial microstructure of electroless Ni–Sn–P/Sn–3.5Ag solder joints was investigated after reflow and solid-state aging. For comparison, the interfacial reaction in electroless Ni–P/Sn–3.5Ag solder joints under the same reflow and aging conditions was studied. It was found that the Ni–Sn–P metallization is consumed much more slowly than the Ni–P metallization during soldering. After prolonged reaction, no Ni3P or voids are observed under SEM at the Ni–Sn–P/Sn–3.5Ag interface. Two main intermetallic compounds, Ni3Sn4 and Ni13Sn8P3, are formed during the soldering reaction. The reason for Ni3P phase suppression and the overall mechanisms of reaction at the Ni–Sn–P/Sn–3.5Ag interface are discussed.  相似文献   

11.
Scaffolds with multiple advantageous biological and structural properties are still a challenge in the field of tissue engineering. The convergence of advanced fabrication techniques and functional materials is key to fulfill this need. Melt electrowriting (MEW) is an additive manufacturing technique that enables the fabrication of microfibrous scaffolds with precisely defined microarchitectures. Here, it is proposed to exploit metal–organic frameworks (MOFs) to efficiently introduce multifunctionalities by combining polycaprolactone (PCL), the gold standard material in MEW, with a silver-/silver-chloride-decorated iron-based MOF (NH2-MIL-88B(Fe)). This results in highly ordered constructs with antibacterial properties and magnetic resonance imaging (MRI) visibility. Scaffolds with up to 20 wt% MOF are successfully melt-electrowritten with a fiber diameter of 50 µm. Among these, 5 wt% MOF proves to be the optimal concentration as it exhibits silver-induced sustained antibacterial efficacy while maintaining PCL cytocompatibility and in vitro immune response. The iron component of the MOF (Fe(III) nodes) renders the composite visible with MRI, thereby enabling scaffold monitoring upon implantation with a clinically accepted method. The combination of MEW and MOFs as tunable additives and cargo carriers opens the way for designing advanced multifunctional scaffolds with a wide range of applications in, e.g., tissue engineering, biosensing and drug delivery.  相似文献   

12.
13.
The development of high-efficiency nanozymes is of great significance in the field of nanozymology, because this is one of the prerequisites for the sophisticated performance of nanozymes. Herein, the developed metal–ligand cross-linking strategy engineers porous carbon nanorod supported ultra-small iron carbide nanoparticles that possess excellent oxidase-like and peroxidase-like enzyme activities. The fabricated nanozyme can efficiently accelerate the oxidation of ascorbate (AA) to enhance cancer cells ablation efficacy. Due to the nanozyme having great surface atoms utilization ratio and large specific surface area, the AA can be rapidly and completely autoxidized within 20 min. Mechanism research demonstrates that the nanozyme's first activation of O2 to generate superoxide free radicals (O2•−) via the oxidase-like pathway, then the O2•− directly oxidizes AA and produces hydrogen peroxide (H2O2). Simultaneously, the H2O2 transforms into the toxic hydroxyl radical through the peroxidase-like pathway and induces tumor cell death. Further in vitro and in vivo assays show the significant enhancement of the anti-tumor efficacy through AA oxidation which is catalyzed by the developed nanozyme. It is expected that this work will benefit not only the development of other efficient nanozymes, but also future advances in the field of AA oxidation induced tumor therapy.  相似文献   

14.
Growth of intermetallic compounds (IMC) at the interface of Sn–2.0Ag–2.5Zn solder joints with Cu, Ni, and Ni–W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu–Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni–W substrate, a thin Ni3Sn4 film was observed between the solder and Ni–W layer. During the aging process a thin layer of the Ni–W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.  相似文献   

15.
The formation of interface and border states in metal–oxide–semiconductor structures associated with the generation of embedded germanium nanocrystals in 20 nm SiO2-layers by means of ion implantation and a subsequent annealing was examined. Deep level transient spectroscopy and related time-domain techniques were applied in order to study the charge trapping and emission at the Si–SiO2 interface. A significant dependence of the interface state density Dit on the conditions of the cluster generation was found. Any Ge-implanted sample features a pronounced level at about 0.31 eV above the valence band edge and a concentration above 1013 cm?2 eV?1, likely related to a Pb-center. A systematic variation of the filling pulse parameters was utilized in order to separate the response of fast and slow states, and to substantiate the existence of border traps located in the vicinity of the Si–SiO2 interface. The role of interface and border traps for the relaxation of the trapped charge in the nanocrystals is illustrated.  相似文献   

16.
Designing efficient electrocatalysts based on metal–organic framework (MOF) nanosheet arrays (MOFNAs) with controlled active heterointerface for the oxygen evolution reaction (OER) is greatly desired yet challenging. Herein, a facile strategy for the synthesis of MOF-based nanosheet arrays (γ-FeOOH/Ni-MOFNA) is developed with abundant heterointerfaces between Ni-MOF and γ-FeOOH nanosheets by introducing linker defects to the former. The experimental and theoretical results show the key role of linker defects in inducing the growth of secondary γ-FeOOH nanosheets onto the surface of Ni-MOFNAs, which further leads to the formation of interfacial Ni/Fe dual sites with high oxygen evolution activity. Notably, the resulting γ-FeOOH/Ni-MOFNA exhibits excellent OER performance with low overpotentials of 193 and 222 mV at 10 and 100 mA cm−2, respectively. Furthermore, the study of the structure–performance relationship of MOF-based heterostructures reveals that Ni sites at the interface of the γ-FeOOH/Ni-MOFNA have higher activity than those at the interface of NiFe layered double hydroxide and Ni-MOFNA. This study provides a new prospect on heterostructured electrocatalysts with highly active sites for enhanced OER.  相似文献   

17.
The application of lithium–sulfur batteries (LSBs) is immensely impeded by notorious shuttle effect, sluggish redox kinetics, and irregular Li2S deposition, which result in large polarization and rapid capacity decay. To obtain the LSBs with high energy density and fast reaction kinetics, herein, a heterostructure composed by nitrogen-deficient graphitic carbon nitride (ND-g-C3N4) and MgNCN is fabricated via a magnesiothermic denitriding technology. Lithophilic C3N4 with abundant nitrogen-deficient acts as a conductive framework, together with the sulfiphilic MgNCN, lithium-polysulfides (LiPSs) can be effectively captured followed by a regulated Li2S nucleation. Furthermore, the oxidation conversion kinetics can be accelerated as well. As expected, the LSBs with catalytic MgNCN/ND-g-C3N4 as the interlayer exhibit remarkable electrochemical performance with a discharge capacity of 650 mAh g−1 at 4 C. Meanwhile, a low capacity decay of 0.008% per cycle can be reached at 1 C after 400 cycles. Even with a high areal sulfur loading of 5.1 mg cm−2, outstanding capacity retention can be achieved at 0.5 C (64.18%) and 1 C (90.46%). The presented strategy unlocks a new way for the LSBs design with highly efficient catalyst.  相似文献   

18.
Rapidly developing Next Generation Sequencing technologies produce huge amounts of short reads that consisting randomly fragmented DNA base pair strings. Assembling of those short reads poses a challenge on the mapping of reads to a reference genome in terms of both sensitivity and execution time. In this paper, we propose a customized many-core hardware acceleration platform for short read mapping problems based on hash-index method. The processing core is highly customized to suite both 2-hit string matching and banded Smith-Waterman sequence alignment operations, while distributed memory interface with 3D–stacked architecture provides high bandwidth and low access latency for highly customized dataset partitioning and memory access scheduling. Conformal with original BFAST program, our design provides an amazingly 45,012 times speedup over software approach for single-end short reads and 21,102 times for paired-end short reads, while also beats similar single FPGA solution for 1466 times in case of single end reads. Optimized seed generation gives much better sensitivity while the performance boost is still impressive.  相似文献   

19.
Modern control theories such as fuzzy control, sliding-mode control, optimal control, neural network control have been widely used in discrete-switching DC–DC converters, While they are seldom used in monolithic integration. Under parameter variation, large supply and load disturbance, high slew-rate current transient, high nonlinearity in today and future power management integrated circuits, linear control theories used in traditional monolithic DC–DC converters cannot satisfy required performance, which make it stringent to use modern control theories in monolithic DC–DC converters. This paper proposes cascade controller which consists of PWM based sliding-mode-voltage control and current-mode control for high frequency DC–DC converters. As long as the dynamic responses of the inner current loop are much faster than the outer sliding-mode-voltage loop, inner and outer loops operate in cascade-mode functionally. This work leads to an easy-to-follow design procedure to design control coefficients. To illustrate the feasibility of the scheme, a monolithic 100 MHz boost DC–DC converter using cascade controller with sliding-mode-voltage and current-mode is designed in SMIC 0.18 μm CMOS process. Several simulations are performed to validate the functionalities of the controller.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号