首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Conductive hydrogels (CHs) have been highlighted in the design of flexible strain sensors and stretchable triboelectric nanogenerators (TENGs) on the basis of their excellent physicochemical properties such as large stretchability and high conductivity. Nevertheless, the incident freezing and drying behaviors of CHs by using water solvent as the dispersion medium limit their application scopes significantly. Herein, an environment tolerant and ultrastretchable organohydrogel is demonstrated by a simple solvent-replacement strategy, in which the partial water in the as-synthesized polyacrylamide/montmorillonite/carbon nanotubes hydrogel is replaced with the glycerol, leading to excellent temperature toleration (−60 to 60 °C) and good stability (30 days under normal environment) without sacrificing the stretchability and conductivity. The organohydrogel exhibits an ultrawide strain sensing range (0–4196%) with a high sensitivity of 8.5, enabling effective detection and discrimination of human activities that are gentle or drastic under various conditions. Furthermore, the organohydrogel is assembled in a single-electrode TENG, which displays excellent energy harvesting ability even under a stretchability of 500% and robustness to directly power wearable electronics in harsh cold conditions. This work inspires a simple route for multifunctional organohydrogel and promises the practical application of flexible and self-powered wearable devices in extreme environments.  相似文献   

2.
The integration of triboelectric nanogenerators (TENGs) and 2D nanomaterials brings about 2D-nanomaterial-based TENGs (2D-TENGs) that promote the rapid development of self-powered sensing systems and wearable electronics. Extraordinary physical, electronic, chemical, and optical properties of 2D nanomaterials endow 2D-TENGs with improved output performance. This review presents the state of the art of 2D-TENGs with respect to basic classifications, enhancement mechanisms, special advantages, output performances, and applications in energy harvesting and self-powered sensing. Furthermore, several challenges that can impede applications of 2D-TENGs are discussed.  相似文献   

3.
Flexible triboelectric nanogenerators (TENGs) with multifunctional sensing capabilities offer an elegant solution to address the growing energy supply challenges for wearable smart electronics. Herein, a highly stretchable and durable electrode for wearable TENG is developed using ZIF-8 as a reinforcing nanofiller in a hydrogel with LiCl electrolyte. ZIF-8 nanocrystals improve the hydrogel's mechanical properties by forming hydrogen bonds with copolymer chains, resulting in 2.7 times greater stretchability than pure hydrogel. The hydrogel electrode is encapsulated by microstructured silicone layers that act as triboelectric materials and prevent water loss from the hydrogel. Optimized ZIF-8-based hydrogel electrodes enhance the output performance of TENG through the dynamic balance of electric double layers (EDLs) during contact electrification. Thus, the as-fabricated TENG delivers an excellent power density of 3.47 Wm2, which is 3.2 times higher than pure hydrogel-based TENG. The developed TENG can scavenge biomechanical energy even at subzero temperatures to power small electronics and serve as excellent self-powered pressure sensors for human-machine interfaces (HMIs). The nanocomposite hydrogel-based TENG can also function as a wearable biomotion sensor, detecting body movements with high sensitivity. This study demonstrates the significant potential of utilizing ZIF-8 reinforced hydrogel as an electrode for wearable TENGs in energy harvesting and sensor technology.  相似文献   

4.
Flexible supercapacitors represent an attractive technology for the next generation of wearable consumer electronics as power sources but usually suffer from relatively low energy density. It is highly desired to construct high-performance electrodes for the practical applications of supercapacitors. Here, inspired by the natural structure of the spider web, an elaborate design of binder is reported through a biosynthesis process to construct flexible electrodes with both excellent mechanical properties and electrochemical performance. Through this strategy, a spider-web-inspired 3D structural binder enables large ion-accessible surface area and high packing density of active electrode material as well as efficient ion transport pathways. As a result, a high areal capacitance of 4.62 F cm-2 and a high areal energy density of 0.18 mW h cm-2 is achieved in the composite electrodes and symmetric supercapacitors, respectively, demonstrating a promising potential to construct flexible energy storage devices for diverse practical applications.  相似文献   

5.
Aqueous zinc-ion micro-batteries (ZIMBs) have attracted considerable attention owing to their reliable safety, low cost, and great potential for wearable devices. However, current ZIMBs still suffer from various critical issues, including short cycle life, poor mechanical stability, and inadequate energy density. Herein, the fabrication of flexible planar ZIMBs with ultrahigh energy density by interfacial engineering in the screen-printing process based on high-performance MnO2-based cathode materials is reported. The Ce-doped MnO2 (Ce-MnO2) exhibits significantly enhanced capacity (389.3 mAh g−1), considerable rate capability and admirable cycling stability than that of the pure MnO2. Importantly, the fabrication of micro-electrodes with ultrahigh mass loading of Ce-MnO2 (24.12 mg cm−2) and good mechanical stability is achieved through optimizing the interfacial bonding between different printed layers. The fabricated planar ZIMBs achieve a record high capacity (7.21 mAh cm−2 or 497.31 mAh cm−3) and energy density (8.43 mWh cm−2 or 573.45 mWh cm−3), as well as excellent flexibility. Besides, a wearable self-powered sensing system for environmental monitoring is further demonstrated by integrating the planar ZIMBs with flexible solar cells and a multifunctional sensor array. This work sheds light on the development of high-performance planar ZIMBs for future self-powered and eco-friendly smart wearable electronics.  相似文献   

6.
Flexible gas sensors play an indispensable role in diverse applications spanning from environmental monitoring to portable medical electronics. Full wearable gas monitoring system requires the collaborative support of high-performance sensors and miniaturized circuit module, whereas the realization of low power consumption and sustainable measurement is challenging. Here, a self-powered and reusable all-in-one NO2 sensor is proposed by structurally and functionally coupling the sensor to the battery, with ultrahigh sensitivity (1.92%/ppb), linearity (R2 = 0.999), ultralow theoretical detection limit (0.1 ppb), and humidity immunity. This can be attributed to the regulation of the gas reaction route at the molecular level. The addition of amphiphilic zinc trifluoromethanesulfonate (Zn(OTf)2) enables the H2O-poor inner Helmholtz layer to be constructed at the electrode–gel interface, thereby facilitating the direct charge transfer process of NO2 here. The device is then combined with a well-designed miniaturized low-power circuit module with signal conditioning, processing and wireless transmission functions, which can be used as wearable electronics to realize early and remote warning of gas leakage. This study demonstrates a promising way to design a self-powered, sustainable, and flexible gas sensor with high performance and its corresponding wireless sensing system, providing new insight into the all-in-one system of gas detection.  相似文献   

7.
Dynamic Schottky direct-current (DC) generators hold great promise for ambient mechanical energy harvesting as it overcomes the low-current output limitation in conventional approaches. However, the lack of a fundamental understanding of DC generation in conducting polymer-based Schottky generators has hindered their application for self-powered wearable and implantable electronics. Here, a high-performance, flexible Schottky DC generator with metal/conducting polymer sliding contact system is demonstrated, which exhibits a large current density (J) up to 20 A m–2 for single contact geometry and a scaled-up DC output reaching 200 µA (J = 0.73 A m–2) and 0.8 V. The design of flexibility in such a Schottky DC generator is inherited from the long-chain polymer concept, leading to the demonstration of a variety of device configuration of free-standing thin film, supported thin film and nanocomposite prototype toward practical applications. It is revealed that the sliding junctions may exhibit a different mechanical energy conversion mechanism compared to the compressive conducting polymer Schottky junctions. It is also proven that the magnitude and polarity of DC generation is determined by the Schottky contact formation and interfacial electric field. The concept of a flexible Schottky generator not only shows great promise for next-generation, self-powered wearable devices, but also provides potential mechanisms for developing novel wearable sensors.  相似文献   

8.
With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy stor-age devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research in-terests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flex-ible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flex-ible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summar-ized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.  相似文献   

9.
Anti-counterfeiting and visual optical information encryption/decryption technology have attracted widespread attention in the field of information security. Luminescent encryption technologies still face a huge challenge in external high voltage power supply, complex architecture, and expensive decryption equipment, which hinder their broad applications. Herein, a wearable integrated self-powered electroluminescent (EL) display device (W-ELD) that consists of MXene/Silicone-based triboelectric nanogenerator (MS-TENG) and EL device based on a shared MXene electrode is developed for patterned display and information encryption. The W-ELD features an all-in-one MXene electrode with excellent flexibility and high conductivity of 0.6 kΩ sq−1, which is shared by both MS-TENG and EL devices. The MS-TENG demonstrates excellent output performances (output power of 0.9 Wm−2) and high stability and durability (104 cycles), which can directly light up the flexible patterned EL device. More importantly, when dripping conductive electrolyte solution, the W-ELD based on “中國”-patterned MXene electrode can precisely reveal the encryption information through self-powered EL emission for real-time visualized information interaction. Consequently, the all-in-one MXene electrode-based W-ELD that integrates both MS-TENG and EL device demonstrates exceptional patterned EL-based information encryption features, which offers a potential prospect in wearable self-powered optoelectronic devices, flexible displays, and encryption technology.  相似文献   

10.
Developing multifunctional triboelectric nanogenerators (TENGs) with special intelligence is of great significance for next-generation self-powered electronic devices. However, the relevant work on the intelligent TENGs, especially those spontaneously responsive to external stimuli, is rarely reported. Herein, an intelligent TENG with thermal-triggered switchable functionality and high triboelectric outputs is developed by designing a movable triboelectric layer, which is driven by a two-way shape memory polyurethane. The resultant TENG device can be spontaneously switched on/off in response to the environmental temperature change, i.e., switching on at 0 °C and off at 60 °C. At the “on” state, the developed TENG exhibits excellent triboelectric performance with a maximum output power density of 5.15 W m−2 at a pressure of 30 kPa due to the unique advantages of micro-/nanofiber triboelectric surfaces. Furthermore, the great potential of the switchable TENG in intelligent wearable electronic applications is demonstrated, which can serve as not only the sensing element for monitoring human movement and physical condition in a cold environment but also the thermal-driven switch for turning on/off the heating function on demand. The intelligent “on–off” switchable TENG combined with excellent triboelectric performance may provide new opportunities for future self-powered wearable electronics.  相似文献   

11.
Triboelectric nanogenerators (TENGs) represent an emerging technology in energy harvesting, medical treatment, and information technology. Flexible, portable, and self-powered electronic devices based on TENGs are much desired, whereas the complex preparation processes and high cost of traditional flexible electrodes hinder their practical applications. Here, an MXene/polyvinyl alcohol (PVA) hydrogel TENG (MH-TENG) is presented with simple fabrication, high output performance, and versatile applications. The doping of MXene nanosheets promotes the crosslinking of the PVA hydrogel and improves the stretchability of the composite hydrogel. The MXene nanosheets also form microchannels on surfaces, which not only enhances the conductivity of the hydrogel by improving the transport of ions but also generates an extra triboelectric output via a streaming vibration potential mechanism. The measured open-circuit voltage of the MH-TENG reaches up to 230 V even in a single-electrode mode. The MH-TENG can be stretched up to 200% of the original length and demonstrates a monotonical increasing relationship between the stretchable length and the short-circuit voltage. By utilizing the MH-TENG's outstanding stretchable property and ultrahigh sensitivity to mechanical stimuli, applications in wearable movement monitoring, high-precision written stroke recognition, and low-frequency mechanical energy harvesting are demonstrated.  相似文献   

12.
The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.  相似文献   

13.
Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 kΩ are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.  相似文献   

14.
Flexible photodetectors exhibit many advantages such as a good bendability, foldability, and even stretchability as well as weight light, which have triggered a widely concerned in wearable electronics including wearable monitoring, wearable image sensing, self-powered integrated electronics, etc. Recently, various II–VI semiconductor nanostructures have become promising candidates in flexible photodetectors due to their unique characteristics, such as direct bandgap semiconductors, excellent optical and electric properties, high quantum efficiency, and inherent mechanical flexibility. Herein, the most recent progress on low-dimensional (0D, 1D, 2D, and related heterostructures) II–VI semiconductors based flexible photodetectors and their application in wearable electronic is reviewed. First, a brief introduction of the main sensing mechanisms and key figures of merits for photodetectors is presented. Then, the recent progresses on flexible photodetectors are provided, in which the functional materials synthesis methods are also discussed. More importantly, the applications of the flexible photodetectors are summarized, including wearable monitoring sensors, image sensors, and self-powered integrated wearable electronics. Finally, the challenges and the future research direction of the flexible photodetectors are discussed, meanwhile the outlook for the development of flexible photodetectors in the future integration of wearable electronic is also provided.  相似文献   

15.
Accompanying the boom in multifunctional wearable electronics, flexible, sustainable, and wearable power sources are facing great challenges. Here, a stretchable, washable, and ultrathin skin-inspired triboelectric nanogenerator (SI-TENG) to harvest human motion energy and act as a highly sensitive self-powered haptic sensor is reported. With the optimized material selections and structure design, the SI-TENG is bestowed with some merits, such as stretchability ( ≈ 800%), ultrathin ( ≈ 89 µ m), and light-weight ( ≈ 0.23 g), which conformally attach on human skin without disturbing its contact. A stretchable composite electrode, which is formed by homogenously intertwining silver nanowires (AgNWs) with thermoplastic polyurethane (TPU) nanofiber networks, is fabricated through synchronous electrospinning of TPU and electrospraying of AgNWs. Based on the triboelectrification effect, the open-circuit voltage, short-circuit current, and power density of the SI-TENG with a contact area of 2 × 2 cm2 and an applied force of 8 N can reach 95 V, 0.3 µ A, and 6 mW m−2, respectively. By integrating the signal-processing circuits, the SI-TENG with excellent energy harvesting and self-powered sensing capability is demonstrated as a haptic sensor array to detect human actions. The SI-TENG exhibits extensive applications in the fields of human–machine interface and security systems.  相似文献   

16.
The challenges of solid-state supercapacitors (SCs) for flexible and wearable electronics still remain in well balancing the electrochemical performance, mechanical stability, and processing technologies. Herein, a high-performance, tailorable and foldable solid-state asymmetric supercapacitor is developed via one-step scalable chemical oxidization and MXene ink painting of N-doped carbon fiber textile (NCFT) substrate. The employed O/N-functionalized NCFT (ONCFT) and MXene materials under opposite potentials both incorporate excellent electrochemical behaviors of carbon-like materials and pseudocapacitive materials, namely high rate capability and pseudocapacitance. By regulating oxidization time and MXene loading, the active layer of MXene decorated NCFT (MNCFT) and ONCFT electrodes analogously present tight skin structure, fundamentally avoiding the risk of active materials detaching from the support during mechanical deformation. As a result, the assembled MNCFT//ONCFT device not only achieves an extended voltage window of 1.6 V, high areal energy density of 277.3 μWh cm−2 and 90% capacitance retention after 30 000 cycles, but also experiences repeated folding tests. Additionally, the design makes it possible to tailor the textile-based energy storage device (TEESD) into a designed size or shape without impairing its performance for device integration or shape conformable integration. Owing to the whole component fabrication being simple and scalable, the TEESD shows potential practical application.  相似文献   

17.
The µW-level power density of flexible piezoelectric energy harvesters (FPEHs) restricts their potential in applications related to high-power multifunctional wearable devices. To overcome this challenge, a hierarchical design strategy is proposed by forming porous piezoceramics with an optimum microstructure into an ordered macroscopic array structure to enable the construction of high performance FPEHs. The porous piezoceramic elements allows optimization of the sensing and harvesting Figure of merit, and the array structure causes a high level of effective strain under a mechanical load. The introduction of a network of polymer channels between the piezoceramic array also provides increased device flexibility, thereby allowing the device to attach and conform to the curved contours of the human body. The unique hierarchical piezoceramic array architecture exhibits superior flexibility, a high open circuit voltage (618 V), high short circuit current (188 µA), and ultrahigh power density (19.1 mW cm−2). This energy density value surpasses previously reported high-performance FPEHs. The ultrahigh power flexible harvesting can charge a 0.1 F supercapacitor at 2.5 Hz to power high-power electronic devices. Finally, the FPEH is employed in two novel applications related to fracture healing monitoring and self-powered wireless position tracking in extreme environments.  相似文献   

18.
The conductive hydrogels always suffered from high internal friction, large hysteresis, and low capability of accurately predicting physical deformation, which seriously restricted their application in smart wearable devices. To address these problems, solvent molecules are directionally inserted into the polymer molecule chains via bridge effect to effectively reduce the molecular internal friction. Moreover, swelling is also combined to eliminate the temporary entanglements in the hydrogel system. The cooperation between the bridge and swollen effect endows the prepared polyacrylamide (PAM)/laponite/H3BO3/ethylene glycol (Eg) organohydrogel (PLBOH) ultralow hysteresis (1.38%, ε = 100%), ultrafast response (≈10 ms), and high linearity in the whole-strain-range (R2 = 0.996) with a great sensitivity (GF = 2.68 at the strain range of 0–750%). Meanwhile, the prepared PL10B30OH exhibits long-term stability, excellent stretchability, and low dissipated energy. Furthermore, the assembled triboelectric nanogenerator (TENG) displays an outstanding energy harvesting performance with an output voltage of 200 V with the size of 20 mm × 20 mm. The assembled strain sensors can monitor the small strain of facial expressions and large strain of human movements, indicating the tremendous applications in self-powered intelligent and flexible wearable electronics under harsh environmental conditions.  相似文献   

19.
A self-powered system for the Internet of Things (IoT) is demonstrated for efficient energy harvesting of naturally available mechanical energy. In this system, new contact-separation mode triboelectric nanogenerators (TENGs), based on fluorinated ethylene propylene, are investigated using the segmented multi-TENG configuration to reduce the effect of parasitic capacitance. The TENG extraction is optimized using a unit step excitation involved with the Dawson function to achieve a high voltage (400 V) and a high current (26.6 µA). To fully extract the power of the TENGs, the power management integrated circuit (PMIC) specially designed for adaptively controlled, high-voltage (HV) maximum power point tracking (MPPT) is proposed. The PMIC implemented in a bipolar CMOS-DMOS 180 nm process can handle a wide input range (5–70 V) by consuming 420 nW. The MPPT control allows a wide range of impedance matching from 10 to 300 MΩ, achieving a tracking efficiency of up to 98.2%. The end-to-end efficiency of 88% demonstrates state-of-the-art performance. To supply a higher instantaneous power than that available from the TENGs, a duty-cycling technique is successfully demonstrated. The proposed energy harvesting system provides a promising approach to realizing sustainable and autonomous energy sources for various IoT applications.  相似文献   

20.
Triboelectric nanogenerators (TENGs) are a promising technology to convert mechanical energy to electrical energy based on coupled triboelectrification and electrostatic induction. With the rapid development of functional materials and manufacturing techniques, wearable and implantable TENGs have evolved into playing important roles in clinic and daily life from in vitro to in vivo. These flexible and light membrane‐like devices have the potential to be a new power supply or sensor element, to meet the special requirements for portable electronics, promoting innovation in electronic devices. In this review, the recent advances in wearable and implantable TENGs as sustainable power sources or self‐powered sensors are reviewed. In addition, the remaining challenges and future possible improvements of wearable and implantable TENG‐based self‐powered systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号