共查询到20条相似文献,搜索用时 15 毫秒
1.
Runnan Yu Huifeng Yao Ye Xu Jiayao Li Ling Hong Tao Zhang Yong Cui Zhongxiang Peng Mengyuan Gao Long Ye Zhan'ao Tan Jianhui Hou 《Advanced functional materials》2021,31(18):2010535
Developing novel solid additives has been regarded as a promising strategy to achieve highly efficient organic solar cells with good stability and reproducibility. Herein, a small molecule, 2,2′-(perfluoro-1,4-phenylene)dithiophene (DTBF), designed with high volatility and a strong quadrupole moment, is applied as a solid additive to implement active layer morphology control in organic solar cells. Systematic theory simulations have revealed the charge distribution of DTBF and its analog and their non-covalent interaction with the active layer materials. Benefitting from the more vital charge–quadrupole interaction, the introduction, and volatilization of DTBF effectively induced more regular and condensed molecular packing in the active layer, leading to enhanced photoelectric properties. Thus, high efficiency of over 17% is obtained in the DTBF-processed devices, which is higher than that of the control devices. Further application of DTBF in different active layer systems contributed to a deeper comprehension of this type of additive. This study highlights a facile approach to optimizing the active layer morphology by finely manipulating the quadrupole moment of volatile solid additives. 相似文献
2.
Yiyan Ran Chengxu Liang Zhihao Xu Wenwen Jing Xiaopeng Xu Yuwei Duan Ruipeng Li Liyang Yu Qiang Peng 《Advanced functional materials》2024,34(8):2311512
Employing volatile solid additives have emerged as a promising method to optimize the morphology and improve the performance of organic solar cells (OSCs). However, principles governing the efficient design of solid additives remain elusive. Herein, the programmed fluorination and/or bromination on benzene core to develop efficient additives for OSCs is reported. The programmed fluorination and/or bromination endow the five halogen benzene derivatives, 1,3,5-trifluorobenzene, hexafluorobenzene, 1,3,5-tribromo-2,4,6-trifluorobenzene (TFTB), 1,3,5-tribromobenzene, and hexabromobenzene, with different melting and boiling points, volatility, as well as interactions with the host blend. Studies indicate that the additives with extremely high and low volatility are almost powerless and even detrimental to the morphology evolution. Among them, the combination of fluorine and bromine atoms on TFTB not only enables the more appropriate m.p./b.p. and volatility, but also exerts stronger molecular interactions with the host blend, giving rise to higher ordered molecular packing and more favorable morphology. Importantly, TFTB exhibits good universality to optimize the performances of OSCs with high power conversion efficiencies (PCEs; over 18%) in a group of binary blend systems, and an impressive PCE of 19.43% in the ternary PBTz-F:PM6:L8-BO system. 相似文献
3.
Dingqin Hu Hua Tang Safakath Karuthedath Qianqian Chen Si Chen Jafar I. Khan Heng Liu Qianguang Yang Julien Gorenflot Christopher E. Petoukhoff Tainan Duan Xinhui Lu Frédéric Laquai Shirong Lu 《Advanced functional materials》2023,33(6):2211873
The commercial viability of all-small-molecule (ASM) organic solar cells (OSCs) requires high efficiency, long-term stability, and low-cost production. However, satisfying all these factors at the same time remains highly challenging. Herein, a volatile solid additive, namely, 1,8-dichloronaphthalene (DCN) is demonstrated to simultaneously enhance the power conversion efficiency (PCE) and the storage, thermal as well as photo stabilities of oligothiophene ASM-OSCs with concise and low-cost syntheses. The improved PCEs are mainly due to the DCN-induced morphology control with improved exciton dissociation and reduced non-geminate recombination. Notably, the PCE of 16.0% stands as the best value for oligothiophene ASM-OSCs and is among the top values for all types of binary ASM-OSCs. In addition, devices incorporating DCN have shown remarkable long-term stability, retaining over 90% of their initial PCE after dark storage aging of 3000 h and thermal or light stressing of 500 h. The findings demonstrate that the volatile-solid-additive strategy can be a simple yet effective method of delivering highly efficient and stable oligothiophene ASM-OSCs with excellent commercial viability. 相似文献
4.
Jiaping Xie Jiawei Deng Yaqi Pei Sang Young Jeong Bin Huang Dan Zhou Han Young Woo Junying Xu Feiyan Wu Lie Chen 《Advanced functional materials》2024,34(37):2402281
Ideal nanoscale morphology of heterojunction active layer is important for the development of organic solar cells (OSCs). However, the mismatched crystalline kinetic between the polymer donor and small molecular acceptor often leads to the difficulties in controlling the morphology of the active layer. Herein, polar 1,2-dibromo-4,5-difluorobenzene (DFB) and non-polar 1,4-dibromotetrafluorobenzene (TFB) are developed as the volatile additives for OSCs. More attractively, different from the reported volatile additives, both new volatile additives can simultaneously interact with donor and acceptor, synergistic regulating the crystallization kinetic and well-balancing the crystallization behaviors between the polymer donor and small molecular acceptor during film formation process. Notably, due to the stronger dipole-dipole interactions with active layer, polar DFB induces the more favorable film morphology than non-polar TFB. As a result, the two additives-treated PM6:Y6 devices both outperform the CN-treated device (16.13%), and the polar DFB-treated device deliver a higher efficiency of 17.15% than non-polar TFB-treated one (16.30%). With polar DFB additive, PM6:L8-BO and PM6: BTP-eC9 also achieve superior efficiency of 18.46% and 18.17%, respectively. This work deepens the insights of regulating crystallization kinetics and optimizing nanoscale morphology by developing simple volatile additives for further achieving high-efficient OSCs. 相似文献
5.
Lei Xu Yaomeng Xiong Sunsun Li Wenchao Zhao Jianqi Zhang Chunyang Miao Yuyang Zhang Tao Zhang Junjiang Wu Shaoqing Zhang Qiming Peng Zhen Wang Long Ye Jianhui Hou Jianpu Wang 《Advanced functional materials》2024,34(17):2314178
Achieving environmentally friendly solvent-processed high-performance organic photovoltaic cells (OPVs) is a crucial step toward their commercialization. Currently, OPVs with competitive efficiencies rely heavily on harmful halogenated solvent additives. Herein, the green and low-cost 9-fluorenone (9-FL) is employed as a solid additive. By using the o-xylene/9-FL solvent system, the PM6:BTP-eC9-based devices deliver power-conversion efficiencies of 18.6% and 17.9% via spin-coating and blade-coating respectively, outperforming all PM6:Y-series binary devices with green solvents. It is found that the addition of 9-FL can regulate the molecular assembly of both PM6 and BTP-eC9 in film-formation (molecule-level mixing) and post-annealing (thermal-assisted molecular reorganization with additive volatilization) stages, so as to optimize the blend morphology. As a result, the charge transport ability of donor and acceptor phases are simultaneously enhanced, and the trap-assisted recombination is reduced, which contributes to the higher short-circuit current density and fill factor. Moreover, the generation of photo-induced traps is significantly suppressed, resulting in improved stability under illumination. It is further demonstrated the excellent universality of 9-FL in various photoactive systems, making it a promising strategy to advance the development of eco-friendly OPVs. 相似文献
6.
Hongyu Fan Hang Yang Yue Wu Okan Yildiz Xianming Zhu Tomasz Marszalek Paul W.M. Blom Chaohua Cui Yongfang Li 《Advanced functional materials》2021,31(37):2103944
Currently, morphology optimization methods for the fused-ring nonfullerene acceptor-based polymer solar cells (PSCs) empirically follow the treatments originally developed in fullerene-based systems, being unable to meet the diverse molecular structures and strong crystallinity of the nonfullerene acceptors. Herein, a new and universal morphology controlling method is developed by applying volatilizable anthracene as solid additive. The strong crystallinity of anthracene offers the possibility to restrict the over aggregation of fused-ring nonfullerene acceptor in the process of film formation. During the kinetic process of anthracene removal in the blend under thermal annealing, donor can imbed into the remaining space of anthracene in the acceptor matrix to form well-developed nanoscale phase separation with bi-continuous interpenetrating networks. Consequently, the treatment of anthracene additive enables the power conversion efficiency (PCE) of PM6:Y6-based devices to 17.02%, which is a significant improvement with regard to the PCE of 15.60% for the reference device using conventional treatments. Moreover, this morphology controlling method exhibits general application in various active layer systems to achieve better photovoltaic performance. Particularly, a remarkable PCE of 17.51% is achieved in the ternary PTQ10:Y6:PC71BM-based PSCs processed by anthracene additive. The morphology optimization strategy established in this work can offer unprecedented opportunities to build state-of-the-art PSCs. 相似文献
7.
Min Li Kangning Zhang Jiawei Qiao Qian Wang Linghua Wang Ming Sun Lei Ying Ning Li Peng Lu Hang Yin Xiaoyan Du Xiaotao Hao 《Advanced functional materials》2023,33(18):2214361
The investigation of drying dynamics and kinetic quenching depth related degradation of high-performance photoactive materials with scalable coating techniques demands significant research attention. Herein, film formation kinetics regulated crystallinity, preferential orientation and vertical phase separation of the active layers is revealed, which then further affects exciton diffusion, dissociation, charge-transport and recombination processes. By suppressing over aggregation/crystallization in slow drying process and overcoming quenching of disordered liquid phase in fast-dried films, the optimized PM6:BTP-eC9-based organic solar cells obtain power conversion efficiencies up to 16.81%. In addition, photoluminescence lifetime distribution is found to be an alternative probe for kinetic quenching depth that governs the degradation rate. This study provides valuable insights into the control of thin film formation kinetics during scalable processing and develops an effective way to associate the kinetic quenching depth with morphological degradation for mechanistic understanding of long-term stability. 相似文献
8.
Xinkang Wang Lifu Zhang Lei Hu Zijun Xie Houdong Mao Licheng Tan Youdi Zhang Yiwang Chen 《Advanced functional materials》2021,31(33):2102291
Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10-decanediol (DDO) into PM6 and another 1-chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk-heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD-type OSCs. As a result, the binary additives SD-type OSCs with blend film PM6 + DDO/Y6 + CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high-efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. 相似文献
9.
Wenyue Xue Zezhou Liang Yabing Tang Chao Zhao Lihe Yan Wei Ma Han Yan 《Advanced functional materials》2023,33(42):2304960
Organic solar cells (OSCs) process fascinating solution-printing capability to achieve low-cost and large-scale manufacture. However, the rapid power conversion efficiency (PCE) decay with active layer thickness enlargement inhibits the implement of OSCs’ potential advantages. To overcome the bottlenecks of PCE decay in thick active layer OSCs, the electrical doping with componential selectivity in bulk heterojunction (BHJ) film is achieved by introducing a solid solvation additive. Benefiting from the higher exciton splitting efficiency together with the longer drift (Ldr) and diffusion (Ldiff) lengths, an OSC with 100 nm BHJ film demonstrates a PCE increment from 16.44% to 18.24% with prolonged dark and illuminated storage stabilities. Applying the solid solvation assisted (SSA) doping method in the OSCs with 500 nm active layer, the PCE significantly increases by 31.9%, from the original value of 11.79% to 15.55%. It further improves to 15.84% in a ternary blend thick-film device, which is the record value to the best of our knowledge. Besides, the SSA doping narrows the PCE gap between the 0.04 and 1 cm2 devices. All improvements demonstrate the great potential of SSA doping for OSC commercial manufacture, since it optimizes the photovoltaic performance under all practical conditions of long-term, thick-film, and large-area. 相似文献
10.
Agnese Abrusci R. Sai Santosh Kumar Mohammed Al‐Hashimi Martin Heeney Annamaria Petrozza Henry J. Snaith 《Advanced functional materials》2011,21(13):2571-2579
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system. 相似文献
11.
Nonfullerene acceptors have recently drawn considerable attention in bulk heterojunction organic solar cells (OSCs). The power conversion efficiency (PCE) over 14% is achieved in single‐junction fullerene‐free OSCs, which has surpassed that of fullerene‐based counterparts. For future commercial applications, however, a high and stable PCE > 15% is required, which entails rational material design and device optimization. In this context, three approaches are generally utilized—the synthesis of novel nonfullerene acceptors and the selection of suitable polymer donors to pair with them, the tandem or multijunction device architecture, and the ternary blend strategy. Compared to the former two methods, the ternary strategy allows to employ the existing photovoltaic materials and the single‐junction device. Therefore, an exploration of nonfullerene acceptor–based ternary blend OSCs (NFTSCs) has shown unprecedented progress since 2016. This review summarizes and classifies the photovoltaic materials utilized in NFTSCs, aiming to not only exhibit the recent development of NFTSCs but also elucidate the correlation among donor/acceptor materials, film morphology, transport dynamics, and device fabrication toward high‐efficiency OSCs. Lastly, the above key advances are highlighted along with the existing issues and insights into the viable path for the further research thrusts are offered. 相似文献
12.
Shucheng Qin Zhenrong Jia Lei Meng Can Zhu Wenbin Lai Jinyuan Zhang Wenchao Huang Chenkai Sun Beibei Qiu Yongfang Li 《Advanced functional materials》2021,31(25):2102361
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production. 相似文献
13.
14.
10.8% Efficiency Polymer Solar Cells Based on PTB7‐Th and PC71BM via Binary Solvent Additives Treatment
下载免费PDF全文

Qun Wan Xia Guo Zaiyu Wang Wanbin Li Bing Guo Wei Ma Maojie Zhang Yongfang Li 《Advanced functional materials》2016,26(36):6635-6640
In this work, polymer solar cells are fabricated based on the blend of PTB7‐Th: PC71BM by using a mixed solvent additive of 1,8‐diiodooctane and N‐methyl pyrrolidone to optimize the morphology of the blend. A high power conversion efficiency (PCE) of 10.8% has been achieved with a simple conventional device. In order to deeply investigate the influence of the mixed solvent additives on the morphology and device performance, the variations of the molecular packing and bulk morphology of the blend film cast from ortho‐dichlorobenzene with single or binary solvent additives are measured. Although all the blend films exhibit similar domain size and nanoscale phase separation, the blend film processed with mixed solvent additive shows the highest domain purity, resulting in the least bimolecular recombination, relatively high Jsc and FF, and hence enhanced PCE. Therefore, the best photovoltaic performance with the Voc of 0.82 V, Jsc of 19.1 mA cm?2, FF of 69.1%, and PCE of 10.8% are obtained for the device based on the blend with binary solvent additive treatment. 相似文献
15.
John A. Love Christopher M. Proctor Jianhua Liu Christopher J. Takacs Alexander Sharenko Thomas S. van der Poll Alan J. Heeger Guillermo C. Bazan Thuc‐Quyen Nguyen 《Advanced functional materials》2013,23(40):5019-5026
Morphological control over the bulk heterojunction (BHJ) microstructure of a high‐efficiency small molecule photovoltaic system is demonstrated using both thermal treatment and solvent additive processing. Single crystal X‐ray diffraction is utilized to understand molecular interactions in the solid state and the BHJ morphology is examined using bright field, high‐resolution, and cross‐section transmission electron microscopy techniques. Controlling the domain size, while maintaining good molecular order within the semiconducting donor material, is found to be crucial in achieving high performance and over 90% internal quantum efficiency exhibited under the optimized conditions. 相似文献
16.
Fiona H. Scholes Tino Ehlig Michael James Kwan H. Lee Noel Duffy Andrew D. Scully T. Birenda Singh Kevin N. Winzenberg Pete Kemppinen Scott E. Watkins 《Advanced functional materials》2013,23(45):5655-5662
A comprehensive study of the effect of intraphase microstructure on organic photovoltaic (OPV) device performance is undertaken. Utilizing a bilayer device architecture, a small molecule donor (TIPS‐DBC) is deposited by both spin‐coating and by thermal evaporation in vacuum. The devices are then completed by thermal evaporation of C60, an exciton blocking layer and the cathode. This bilayer approach enables a direct comparison of device performance for donor layers in which the same material exhibits subtle differences in microstructure. The electrical performance is shown to differ considerably for the two devices. The bulk and interfacial properties of the donor layers are compared by examination with photoelectron spectroscopy in air (PESA), optical absorption spectroscopy, charge extraction of photo‐generated charge carriers by linearly increasing voltage (photo‐CELIV), time‐resolved photoluminescence measurements, X‐ray reflectometry (XR), and analysis of dark current behavior. The observed differences in device performance are shown to be influenced by changes to energy levels and charge transport properties resulting from differences in the microstructure of the donor layers. Importantly, this work demonstrates that in addition to the donor/acceptor microstructure, the intraphase microstructure can influence critical parameters and can therefore have a significant impact on OPV performance. 相似文献
17.
Xiaodong Si Yuzhong Huang Wendi Shi Ruohan Wang Kangqiao Ma Yunxin Zhang Simin Wu Zhaoyang Yao Chenxi Li Xiangjian Wan Yongsheng Chen 《Advanced functional materials》2023,33(47):2306471
The efficiency of organic solar cells (OSCs) is primarily limited by their significant nonradiative energy loss and unfavorable active layer morphology. Achieving high-efficiency OSCs by suppressing nonradiative energy loss and tuning the active layer morphology remains a challenging task. In this study, an acceptor named CH-ThCl is designed, featuring an extended conjugation central core, dichlorodithienoquinoxaline. The incorporation of chlorine-substituted extended conjugation in the central core enhances the acceptor's rigidity and promotes J-aggregation, leading to improved molecular luminescent efficiency and a reduction in nonradiative energy loss. A binary device based on PM6: CH-ThCl demonstrates a power conversion efficiency (PCE) of 18.16% and exhibits a high open-circuit voltage (Voc) of 0.934 V, attributed to the remarkably low nonradiative energy loss of 0.21 eV. Furthermore, a ternary device is fabricated by incorporating CH-6F as the third component, resulting in a significantly enhanced PCE of 18.80%. The ternary device exhibits improvements in short-circuit current (Jsc) and fill factor (FF) while maintaining the Voc, primarily due to the optimized active layer morphology. These results highlight the effectiveness of combining the reduction of nonradiative energy loss and precise tuning of the active layer morphology as a viable strategy for achieving high-efficiency OSCs. 相似文献
18.
Emily J. Yang Joel Luke Yuang Fu Zhuoran Qiao Matthew Bidwell Adam V. Marsh Martin Heeney Nicola Gasparini Ji-Seon Kim 《Advanced functional materials》2024,34(42):2406941
Despite major advances in efficiency, the operational stability of organic photovoltaic (OPV) devices remains poor. Therefore, understanding the degradation mechanisms and identifying potential solutions to improve device stability is critical to enabling the widespread commercialization of OPVs. Herein, simple filtration of the PBDB-T:ITIC photoactive layer (PAL) solution prior to film deposition is demonstrated to enhance OPV device operational stability without compromising initial device performance. The effect of filtration, a commonly used but poorly understood OPV fabrication step, is investigated using a range of chemical, structural, and optoelectronic methods, on solutions and films. Filtration is found to remove large aggregates from solution without disrupting nanoscale preaggregation, resulting in enhanced acceptor ordering in PBDB-T:ITIC thin films, significantly improving morphological stability and photostability. This simple and facile method is confirmed to be a general strategy that also works for other PBDB-T-containing OPV blends, including Y6-based systems, and highlights how subtle changes in morphology can result in dramatic differences in operational stability. 相似文献
19.
Jung Hwa SeoSun Young Nam Kwang-Sup Lee Tae-Dong KimShinuk Cho 《Organic Electronics》2012,13(4):570-578
The effects of processing additive on fullerene aggregation in polymer BHJ solar cells were investigated using new fullerene derivatives bearing a thiophene moiety and alkyl groups. Although new fullerene derivatives showed quite similar electronic transport properties in field-effect transistors, the photovoltaic performances were significantly limited by their aggregative nature. Processing with 1% CN additive, however, changed the aggregated morphology of BHJ films to a smoother and homogeneous morphology, improving photovoltaic performance. The result indicates that processing additive not only influences on polymer side, but also significantly affects fullerene acceptor component. 相似文献
20.
Long Ye Yuan Xiong Sunsun Li Masoud Ghasemi Nrup Balar Johnathan Turner Abay Gadisa Jianhui Hou Brendan T. O'Connor Harald Ade 《Advanced functional materials》2017,27(33)
Significant efforts have lead to demonstrations of nonfullerene solar cells (NFSCs) with record power conversion efficiency up to ≈13% for polymer:small molecule blends and ≈9% for all‐polymer blends. However, the control of morphology in NFSCs based on polymer blends is very challenging and a key obstacle to pushing this technology to eventual commercialization. The relations between phases at various length scales and photovoltaic parameters of all‐polymer bulk‐heterojunctions remain poorly understood and seldom explored. Here, precise control over a multilength scale morphology and photovoltaic performance are demonstrated by simply altering the concentration of a green solvent additive used in blade‐coated films. Resonant soft X‐ray scattering is used to elucidate the multiphasic morphology of these printed all‐polymeric films and complements with the use of grazing incidence wide‐angle X‐ray scattering and in situ spectroscopic ellipsometry characterizations to correlate the morphology parameters at different length scales to the device performance metrics. Benefiting from the highest relative volume fraction of small domains, additive‐free solar cells show the best device performance, strengthening the advantage of single benign solvent approach. This study also highlights the importance of high volume fraction of smallest domains in printed NFSCs and organic solar cells in general. 相似文献