首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective antitumor agents with concurrent osteogenic properties are essential for comprehensive osteosarcoma (OS) treatment. However, the current clinical therapeutic strategies of OS fail to completely eradicate tumors while simultaneously encouraging bone formation. To address this issue, a switchable strategy for dynamic OS ablation and static bone regeneration is developed by integrating piezoelectric BaTiO3 (BTO) with atomic-thin Ti3C2 (TC) through a Schottky heterojunction, resulting in the formation of TC@BTO. Under sequential ultrasound and near-infrared irradiation, the optimized carrier transport of TC@BTO, based on Schottky heterojunction, exhibits excellent characteristics of photothermal conversion and reactive oxygen species generation. This results in ferroptosis of tumor cells and eventual elimination of OS. Moreover, in the static state, the interfacial Schottky heterojunction facilitates the carriers’ directed transfer from the semiconductor to the metal. The Schottky heterojunction-enhanced static electrical stimulation enhances the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and repair of bone defects. Furthermore, RNA-sequencing analysis reveals that static TC@BTO promotes bone regeneration by activating Wnt signaling pathway, and remarkably, pharmacological inhibition of Wnt signaling suppresses the TC@BTO-induced osteogenesis. Overall, this work broadens the biomedical potential of Schottky heterojunction-based therapies and provides a comprehensive strategy for overall OS ablation and bone regeneration.  相似文献   

2.
The tumor microenvironment (TME) with the characteristics of severe hypoxia, overexpressed glutathione (GSH), and high levels of hydrogen peroxide (H2O2) dramatically limits the antitumor efficiency by monotherapy. Herein, a novel TME-modulated nanozyme employing tin ferrite (SnFe2O4, abbreviated as SFO) is presented for simultaneous photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT). The as-fabricated SFO nanozyme demonstrates both catalase-like and GSH peroxidase-like activities. In the TME, the activation of H2O2 leads to the generation of hydroxyl radicals (•OH) in situ for CDT and the consumption of GSH to relieve antioxidant capability of the tumors. Meanwhile, the nanozyme can catalyze H2O2 to generate oxygen to meliorate the tumor hypoxia, which is beneficial to achieve better PDT. Furthermore, the SFO nanozyme irradiated with 808 nm laser displays a prominent phototherapeutic effect on account of the enhanced photothermal conversion efficiency (η  = 42.3%) and highly toxic free radical production performance. This “all in one” nanozyme integrated with multiple treatment modalities, computed tomography, and magnetic resonance imaging properties, and persistent modulation of TME exhibits excellent tumor theranostic performance. This strategy may provide a new dimension for the design of other TME-based anticancer strategies.  相似文献   

3.
Solid tumors are characterized by a hypoxic and immunologically “cold” microenvironment that dramatically limits the therapeutic outcomes of immunotherapy. Thus, strategies and materials that are capable of reversing immunosuppression in immune-cold tumors are highly desired. Herein, it is reported that oxygen (O2) self-supplementing conjugated microporous polymer nanosheets can be utilized to elicit a robust antitumor T cell immune response in the hypoxic and immunosuppressive tumor microenvironment. The ultrathin nanosheets can generate O2 through the water splitting reaction and produce massive reactive oxygen species (ROS) under near infrared light irradiation. Meanwhile, the unique photothermal property of the conjugated polymer nanosheets generates hyperthermia under irradiation. Consequently, they are able to maximize the immunogenic cell death (ICD) performance by inducing adequate damage-related molecular patterns in hypoxic tumors. Other than fostering T cell infiltration by the elicited ICD, the loaded indoleamine 2,3-dioxygenase in nanosheets can reverse the immunosuppression and empower ICD effect for efficient T cells priming. In vivo experiments conclusively prove that the designed polymer nanosheets exhibit great potential for tumor eradication, metastasis prevention, as well as long-term survival. Such a photocatalytic platform opens up new paths for reversing immunosuppression in immune-cold tumors and broadens the application of polymer-based nanosheets for cancer therapy.  相似文献   

4.
Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32? shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.  相似文献   

5.
Despite the promise of ferrotherapy in cancer treatment, current ferrous therapeutics suffer from compromised antitumor ferroptosis efficacy and low specificity for tumors. Herein, a protease-activatable nanozyme (Fe3O4@Cu1.77Se) is reported for photoacoustic and tumor-enhanced magnetic resonance imaging (MRI)-guided second near-IR photothermal ferroptosis cancer therapy. Fe3O4@Cu1.77Se remains stable in physiological conditions, but disintegrates to increase reactive intratumoral ferrous supply for elevated hydroxyl radical generation by Fenton reaction and GSH depletion in response to overexpressed matrix metalloproteinases in tumor microenvironment, leading to amplified ferroptosis of tumor cells as well as enhanced T2-weighted MRI contrast. Further integration with second near-IR photoirradiation to generate localized heat not only triggers effective photothermal therapy and photoacoustic imaging but more importantly, potentiates Fenton reaction to promote ferroptotic tumor cell death. Such synergism leads to the polarization of tumor-associated macrophage from the tumor-promoting M2 type to the tumor-killing M1 type, and induces the immunogenic cells death of tumor cells, which in turn promotes the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes in tumor, contributing to significant tumor suppression. This study presents a novel activatable ferrous nanotheranostics for spatial-temporal control over antitumor ferroptosis responses.  相似文献   

6.
Covalent organic framework (COF) receives great attention in biomedical applications due to its variable compositions and ordered structures. However, its targeted design to achieve desirable physiological functions especially for cancer treatments remains elusive. Herein, PEGylated COF with tumor-specific TKD peptide modification is uniformly coated on photothermal mesoporous carbon nanospheres via polyethyleneimine-mediated interface polymerization to construct a multifunctional core-shell nanoparticle (OPCPT). Physicochemical studies demonstrate near infrared (NIR)-blocking ability of the crystalline COF shells under physiological conditions, whereas COF is degraded under the acidic tumor microenvironments (TME). Subsequently, the nanoparticle charge is reversed and the COF monomers can produce 1O2/O2. As a result, OPCPT, activated in the TME due to the shell dissociation, penetrates deeply into tumors through positive charge-mediated/lysosome rupture-mediated transcytosis and recovers its NIR-heating potential for tumor-specific photothermal therapy. Moreover, the TME-triggered 1O2 significantly depresses the lysosome autophagy via membrane destruction, and selectively damages the mitochondria to promote the cytochrome C release-activated apoptosis and ATP deficiency-inhibited tumor metastasis. Particularly, this unique O2 generation mechanism relieves the tumor hypoxia upon the reactive oxygen species therapy and downregulates hypoxia-inducible factor and its downstream proteins, which all contribute to augmented tumor therapy. The findings represent a remarkable unveiling of the potential of COF-based nanomaterials for extended biomedical applications.  相似文献   

7.
Nanocatalytic medicine has emerged as a promising method for the specific cancer therapy by mediating the interaction between tumor microenvironment biomarkers and nanoagents. However, the produced antitumor cell killing molecules, such as reactive oxygen species (ROS), by catalysis are insufficient to inhibit tumor growth. Herein, a novel kind of polyvinyl pyrrolidone modified multifunctional iron sulfide nanoparticles (Fe1−xS-PVP NPs) is developed via a one-step hydrothermal method, which exhibits high photothermal (PT) conversion efficiency (η = 24%) under the irradiation of 808 nm near-infrared laser. The increased temperature further facilitates the Fenton reaction to generate abundant •OH radicals. More importantly, under an acidic (pH = 6.5) condition within tumor environment, the Fe1−xS-PVP NPs can in situ produce H2S gas, which is evidenced to suppress the activity of enzyme cytochrome c oxidase (COX IV) in cancer cells, contributing to inhibit the growth of tumor. Both in vitro and in vivo results demonstrate that the H2S-mediated gas therapy in combination with PT enhanced ROS achieves excellent antitumor performance, which can open up a new approach for the design of gas-mediated cancer treatment.  相似文献   

8.
Photodynamic therapy (PDT) as a non-invasive strategy shows high promise in cancer treatment. However, owing to the hypoxic tumor microenvironment and light irradiation-mediated rapid electron–hole pair recombination, the therapeutic efficacy of PDT is dramatically discounted by limited reactive oxygen species (ROS) generation. Herein, a multifunctional theranostic nanoheterojunction is rationally developed, in which 2D niobium carbide (Nb2C) MXene is in situ grown with barium titanate (BTO) to generate a robust photo-pyroelectric catalyst, termed as BTO@Nb2C nanosheets, for enhanced ROS production, originating from the effective electron–hole pair separation induced by the pyroelectric effect. Under the second near-infrared (NIR-II) laser irradiation, Nb2C MXene core-mediated photonic hyperthermia regulates temperature variation around BTO shells facilitating the electron–hole spatial separation, which reacts with the surrounding O2 and H2O molecules to yield toxic ROS, achieving a synergetic effect by means of combinaterial photothermal therapy with pyrocatalytic therapy. Correspondingly, the engineered BTO@Nb2C composite nanosheets feature benign biocompatibility and high antitumor efficiency with the tumor-inhibition rate of 94.9% in vivo, which can be applied as an imaging-guided real-time non-invasive synergetic dual-mode therapeutic nanomedicine for efficient tumor nanotherapy.  相似文献   

9.
A hypoxic tumor microenvironment (TME) makes tumors resistant to various therapies including chemotherapies, radiotherapies, and photodynamic therapies. Here, a new strategy of building a reactive oxygen species (ROS) field effect transistor (FET) is reported, which enables amplified ROS flux for tumor ablation and addresses the challenge of tumor hypoxia by a liposomal delivery system (SN-38∩LP@Fe3O4/GOx). This design can switch “ON” the ROS FET by a small tuning on the “gate electrode” with downregulation of HIF-1α signaling. Highly effective tumor ablation both in vitro and in vivo using the ROS FET strategy is demonstrated, and its mechanism of changing tumor hypoxia is revealed. Distinctly different from the previous reports based on the chemical supply to address hypoxia TME, this work conceptually creates a method of maximizing ROS damages for cancer treatment with well-leveraged modulation of the tumor hypoxia pathways.  相似文献   

10.
Despite the immense potential of immune checkpoint blockade (ICB) therapy in tumor treatment, its widespread clinical application is currently limited by unsatisfactory curative effect and off-target adverse effect. Herein, an injectable sericin (SS)/silk fibroin (SF) recombinant hydrogel, termed SF-SS-SMC hydrogel, is developed to enable local delivery of anti-CD47 antibody (α CD47). The hydrogel displays self-reinforcement in high H2O2 concentration of tumor microenvironment (TME), as the SS/Fe2+ supramolecular nanocomplex (SS-SMC) inside the hydrogel converts H2O2 to reactive oxygen species (ROS), further triggering additional crosslinking among the SF polymers. Therefore, the SF-SS-SMC hydrogel has an in vivo retention time longer than 21 days and acts as a reservoir for the long-term sustained release of α CD47. More importantly, the SF-SS-SMC hydrogel itself efficiently regulates the remodeling of a protumor immunosuppressive TME to an antitumoral TME through switching of tumor-associated macrophages from an anti-inflammatory M2 phenotype to a proinflammatory M1 phenotype without additional drugs. Based on the combined effect of sustained α CD47 release and TME reprogramming, the SF-SS-SMC hydrogel has satisfactory immunotherapeutic effects in the treatment of local, abscopal, remitting, and metastatic tumors. Further advantages, including low cost of production, simple fabrication, and ease of use, make it promising for commercial mass production.  相似文献   

11.
The tumor microenvironment (TME), which includes acidic and hypoxic conditions, severely impedes the therapeutic efficacy of antitumor agents. Herein, MnO2‐loaded, bovine serum albumin, and PEG co‐modified mesoporous CaSiO3 nanoparticles (CaM‐PB NPs) are developed as a nanoplatform with sequential theranostic functions for the engineering of TME. The MnO2 NPs generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic state of the TME that further modulates the cancer cell cycle status to S phase, which improves the potency of co‐loaded S phase‐sensitive chemotherapeutic drugs. After the hypoxia relief, CaM‐PB can sustainably release drugs due to the enlarged pores of mesoporous CaSiO3 in the acidic TME, preventing the drug pre‐leakage into the blood circulation and insufficient drug accumulation at tumor sites. Moreover, the Mn2+ released from the MnO2 NPs at tumor sites can potentially serve as a diagnostic agent, enabling the identification of tumor regions by T1‐weighted magnetic resonance imaging during therapy. In vivo pharmacodynamics results demonstrate that these synergetic effects caused by CaM‐PB NPs significantly contribute to the inhibition of tumor progression. Therefore, the CaM‐PB NPs with sequential theranostic functions are a promising system for effective cancer therapy.  相似文献   

12.
Immunotherapy is a revolutionary achievement in cancer treatment. However, inadequate immune cells infiltration in tumor microenvironment (TME) always leads to treatment failure. Moreover, hypoxic TME hampers normal functions of immune cells. Here, it is found that hypoxia suppresses the STING signaling and immune cells activation in the work. Remodeling tumor immune microenvironment and relieving hypoxia are thus essential for enhancing immunotherapy efficiency. Herein, a spirulina platensis (SP)-based magnetic biohybrid system is constructed as an oxygen factory and loaded with stimulator of interferon genes (STING) agonist ADU-S100 (ADU@Fe-SP) for tumor immunotherapy. Magnet-guided biohybrid SP can actively target tumor tissues and produce oxygen in situ through photosynthesis, which reverses the hypoxic TME and facilitates the function of immune cells. Besides, the targeted delivery of ADU-S100 can activate the STING/TBK1/IRF3 signaling and boost cytokines production in tumor and innate immune cells. The ADU@Fe-SP system thus induces efficient immune cells infiltration in TME, which efficiently inhibits tumor progression and significantly enhances anti-PD-1 therapy efficiency in SCC VII-bearing tumor xenograft. ADU@Fe-SP exerts antitumor effect in a STING-dependent manner by in vivo STING-knockout mice model. The efficiency of this immunotherapy strategy is also demonstrated in patient-derived xenograft model originating from oral cancer, showing great clinical potential.  相似文献   

13.
Biohybrid microswimmers have recently shown to be able to actively perform in targeted delivery and in vitro biomedical applications. However, more envisioned functionalities of the microswimmers aimed at in vivo treatments are still challenging. A photosynthetic biohybrid nanoswimmers system (PBNs), magnetic engineered bacteria‐Spirulina platensis, is utilized for tumor‐targeted imaging and therapy. The engineered PBNs is fabricated by superparamagnetic magnetite (Fe3O4 NPs) via a dip‐coating process, enabling its tumor targeting ability and magnetic resonance imaging property after intravenous injection. It is found that the PBNs can be used as oxygenerator for in situ O2 generations in hypoxic solid tumors through photosynthesis, modulating the tumor microenvironment (TME), thus improving the effectiveness of radiotherapy (RT). Furthermore, the innate chlorophyll released from the RT‐treated PBNs, as a photosensitizer, can produce cytotoxic reactive oxygen species under laser irradiation to achieve photodynamic therapy. Excellent tumor inhibition can be realized by the combined multimodal therapies. The PBNs also possesses capacities of chlorophyll‐based fluorescence and photoacoustic imaging, which can monitor the tumor therapy and tumor TME environment. These intriguing properties of the PBNs provide a promising microrobotic platform for TME hypoxic modulation and cancer theranostic applications.  相似文献   

14.
Fe‐based Fenton agents can generate highly reactive and toxic hydroxyl radicals (·OH) in the tumor microenvironment (TME) for chemodynamic therapy (CDT) with high specificity. However, the strict condition (lower pH environment: 3–4) of the highly efficient Fenton reaction limits its practical application in the clinic. Development of new CDT agents more suitable for TME is significant and challenging. A highly efficient Cu(I)‐based CDT agent, copper(I) phosphide nanocrystals (CP NCs), which is more adaptable to the pH value of TME than Fe‐based agents, thereby producing more ·OH to trigger the apoptosis of cancer cells, is prepared. Moreover, the excess glutathione (GSH) in TME can reduce the Cu(II) produced by a Fenton‐like reaction to Cu(I), further increasing the generation rate of ·OH and relieving tumor antioxidant ability. Furthermore, owing to their strong absorption in the NIR II region, CP NCs exhibit an excellent photothermal conversion effect, which can further improve the Fenton reaction. What is more, CP NCs can act as in situ self‐generation magnetic resonance imaging (MRI) agents owing to the generation of paramagnetic Cu(II) in response to excess H2O2 in the TME. These properties may open up the exploration of copper‐based materials in clinical application of self‐generation imaging‐guided synergetic treatment.  相似文献   

15.
The combination of reactive oxygen species (ROS)‐involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) holds great promise for enhancing ROS‐mediated cancer treatment. Herein, an in situ polymerized hollow mesoporous organosilica nanoparticle (HMON) biocatalysis nanoreactor is reported to integrate the synergistic effect of PDT/CDT for enhancing ROS‐mediated pancreatic ductal adenocarcinoma treatment. 2‐(1‐hexyloxyethyl)‐2‐devinylpyropheophorbide‐a photosensitizer is hybridized within the framework of HMON via an “in situ framework growth” approach. Then, the hollow cavity of HMONs is exploited as a nanoreactor for “in situ polymerization” to synthesize the polymer containing thiol groups, thereby enabling the immobilization of ultrasmall gold nanoparticles, which behave like glucose oxidase‐like nanozyme, converting glucose into H2O2 to provide self‐supplied H2O2 for CDT. Meanwhile, Cu2+‐tannic acid complexes are further deposited on the surface of HMONs (HMON‐Au@Cu‐TA) to initiate Fenton‐like reaction to covert the self‐supplied H2O2 into ?OH, a highly toxic ROS. Finally, collagenase (Col), which can degrade the collagen I fiber in the extracellular matrix, is loaded into HMON‐Au@Cu‐TA to enhance the penetration of HMONs and O2 infiltration for enhanced PDT. This study provides a good paradigm for enhancing ROS‐mediated antitumor efficacy. Meanwhile, this research offers a new method to broaden the application of silica based nanotheranostics.  相似文献   

16.
Nanoparticle-based combination therapy strategy of photothermal therapy (PTT) and immunotherapy is an attractive cancer treatment for ablating tumors and eliciting host immune responses. However, this strategy is often hampered by tedious treatment process and limited immune response, and usually needs to be combined with checkpoint blockades to enhance therapeutic effect. Herein, a nanoplatform with mesoporous silica nanoparticles (MSNs) as a vector, which integrated photothermal agent polydopamine (PDA), model antigen ovalbumin (OVA), and antigen release promoter ammonium bicarbonate (ABC) in an easy way for melanoma PTT-immunotherapy is designed. The formulated MSNs-ABC@PDA-OVA nanovaccine exhibits excellent photothermal properties and effectively eliminates primary tumors. Under laser irradiation, the MSNs-ABC@PDA-OVA nanovaccine realizes rapid antigen release and endosome escape, enhances dendritic cells activation and maturation, facilitates migration to tumor-draining lymph nodes, and induces robust antitumor immune responses. Impressively, single injection of MSNs-ABC@PDA-OVA combines with single round of PTT successfully eradicates melanoma tumors with a cure rate of 75% and generates strong immunological memory to inhibit tumor recurrence and lung metastasis. Hence, the research offers a simple and promising strategy of synergistic PTT-immunotherapy to effectively treat cancer.  相似文献   

17.
Tumor occurrence is closely related to the unlimited proliferation and the evasion of the immune surveillance. However, it remains a challenge to kill tumor cells and simultaneously activate antitumor immunity upon spatially localized external stimuli. Herein, a robust tumor synergistic therapeutic nanoplatform is designed in combination with dual photosensitizers-loaded upconversion nanoparticles (UCNPs) and ferric-tannic acid (FeTA) nanocomplex. Dual photosensitizers-loaded UCNPs can induce photodynamic therapy (PDT) effect by generation of cytotoxic reactive oxygen species (ROS) on demand under near-infrared (NIR) light irradiation. FeTA can robustly respond to acidic tumor microenvironment to produce Fe2+ and subsequently induce chemodynamic therapy (CDT) by reacting with H2O2 in the tumor microenvironment. More importantly, the CDT/PDT synergy can not only exhibit significant antitumor ability but also induce ROS cascade to evoke immunogenic cell death. It increases tumor immunogenicity and promotes immune cell infiltration at tumor sites allowing further introduction of systemic immunotherapy responsiveness to inhibit the primary and distant tumor growth. This study provides a potential tumor microenvironment-responsive nanoplatform for imaging-guided diagnosis and combined CDT/PDT with improved immunotherapy responses and an external NIR-light control of photoactivation.  相似文献   

18.
Metastatic triple-negative breast cancer (TNBC) has a poor prognosis and high mortality with no effective treatment options, and immunotherapy is highly anticipated as a potential treatment but is limited by the lack of tumor-infiltrating T lymphocytes in TNBC. Herein, red blood cell (RBC) membrane-camouflaged polyphosphoester (PPE) nanoparticles (RBC@PPEMTO/PFA) are prepared as the nanocarriers of mitoxantrone (MTO) and perfluoroalkane (PFA) for synergized immunotherapy. The encapsulated MTO can generate heat and reactive oxygen species (ROS) to achieve photothermal and photodynamic therapy; moreover, ROS further triggers the self-accelerating release of MTO from the ROS-sensitive PPE core to enable chemotherapy. The RBC@PPEMTO/PFA-mediated sequential photothermal/photodynamic/chemotherapy efficiently promotes the infiltration of CD8+ T cells into TNBC tumor tissue and synergizes the therapeutic activity of an immune checkpoint blockade antibody for metastatic TNBC treatment in distant and lung metastasis models. This biomimetic nanomedicine of MTO provides a convenient and available strategy to sensitize TNBC to immune checkpoint blockade antibody.  相似文献   

19.
Fabrication of ultrasmall single‐component omnipotent nanotheranostic agents integrated with multimodal imaging and multiple therapeutic functions becomes more and more practically relevant but challenging. In this article, sub 10 nm Bi2S3 biocompatible particles are prepared through a bovine serum albumin (BSA)‐mediated biomineralization process under ambient aqueous conditions. Owing to the ultrasmall size and colloidal stability, the resulting nanoparticles (NPs) present outstanding blood circulation behavior and excellent tumor targeting ability. Toward theranostic applications, the biosafety profile is carefully investigated. In addition, photothermal conversion is characterized for both photoacoustic imaging and photothermal treatment of cancers. Upon radiolabeling, the performance of the resulting particles for SPECT/CT imaging in vivo is also carried out. Additionally, different combinations of treatments are applied for evaluating the performance of the as‐prepared Bi2S3 NPs in photothermal‐ and radiotherapy of tumors. Due to the remarkable photothermal conversion efficiency and large X‐ray attenuation coefficient, the implanted tumors are completely eradicated through combined therapies, which highlights the potential of BSA‐capped Bi2S3 NPs as a novel multifunctional nanotheranostic agent.  相似文献   

20.
Nonspecific absorption and clearance of nanomaterials during circulation is the major cause for treatment failure in nanomedicine‐based cancer therapy. Therefore, herein bioinspired red blood cell (RBC) membrane is employed to camouflage 2D MoSe2 nanosheets with high photothermal conversion efficiency to achieve enhanced hemocompatibility and circulation time by preventing macrophage phagocytosis. RBC–MoSe2‐potentiated photothermal therapy (PTT) demonstrates potent in vivo antitumor efficacy, which triggers the release of tumor‐associated antigens to activate cytotoxic T lymphocytes and inactivate the PD‐1/PD‐L1 pathway to avoid immunologic escape. Furthermore, in the ablated tumor microenvironment, the tumor‐associated macrophages are effectively reprogrammed to tumoricidal M1 phenotype to potentiate the antitumor action. Taken together, this biomimetic functionalization thus provides a substantial advance in personalized PTT‐triggered immunotherapy for clinical translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号