共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
光伏发电功率的预测方法目前分为点值预测和区间预测两类,但点值预测方法难以适应光伏功率的随机性和波动性,因此,该文构建一种基于集合经验模态分解(EEMD)和混沌蚁狮算法(ALOCO)的支持向量机(SVM)光伏功率区间短期预测模型。首先,通过灰色关联度筛选出不同环境条件的相似日样本集,并利用EEMD将光伏出力序列分解成不同的本征模态函数;然后,利用混沌蚁狮算法对SVM的误差惩罚因子C和核函数参数γ进行优化,并利用分位数回归法对光伏的输出功率进行短期区间预测;最后,通过算例数据验证所建立模型的有效性。 相似文献
3.
4.
5.
针对高比例光伏接入电网时,光伏出力的波动性会严重影响电力系统稳定运行的问题提出一种基于平均影响值与改进粒子群优化神经网络的组合式光伏出力短期预测模型。首先,采用直接预测法,选取总辐射量、直接辐射量、散射量、相对湿度、气温、风速和降雨量7个影响光伏出力的因素,构建MIV-PSO-BPNN模型,基于Rapid Miner数据挖掘得出降雨量对光伏出力平均影响值为0.0099,影响较小,不作为模型输入变量。然后,用改进PSO优化算法对BPNN的权值与阈值进行优化。最后,利用上海浦东国际机场T2-2光伏电站数据进行验证,结果表明MIV-PSO-BPNN模型对光伏出力预测有效,在实际中有一定应用价值。 相似文献
6.
7.
8.
光伏序列具有的较高复杂性对光伏发电功率的预测精度产生了极大影响,对此提出一种基于VMD-LSTM与误差补偿的光伏发电超短期功率预测模型。该模型第1阶段采用VMD算法将原始功率序列分解为若干个不同的模态,并对其建立对应的LSTM网络模型进行预测,通过对各模态的预测结果求和得到初始预测功率;第2阶段采用LSTM网络对误差序列进行误差补偿预测,然后将初始预测功率和误差预测功率求和得到最终预测结果。仿真结果表明,该预测模型对天气具有较高的适应性,预测精度达到97%以上。 相似文献
9.
针对光伏功率预测,提出一种光伏发电出力不确定性量化分析的两阶段模型。第1阶段,首先选取待预测日之前一段时间的光伏输出功率历史数据作为训练样本,引入模糊熵(FE)将不同天气类型量化并作为输入量;然后利用集成经验模态分解(EEMD)将光伏发电功率时间序列分解为多个模态分量,再利用Hurst指数分析将不同模态分量重构为中尺度和宏尺度2个子序列,基于双向长短期记忆神经网络并引入注意力机制对重构后的2个子序列分别进行预测;最后对中尺度子序列对应的误差序列进行修正,得到光伏发电出力的点预测结果。第2阶段,根据第1阶段点预测结果得到的误差统计,采用核密度估计(KDE)方法预测光伏发电出力的区间,分别获取在95%、90%、85%及80%置信水平下的区间覆盖率(PICP)。应用中国西北地区某光伏电站运行数据作为算例,验证了该文预测方法的有效性。 相似文献
10.
将点值预测扩展为区间预测,利用光伏出力相似日样本中区间中点和区间半径进行预测,采用常规的BP神经网络算法、GM(1,1)灰色算法、支持向量机(SVM)算法分别预测,利用人群搜索算法(SOA)对各种区间预测的组合权值进行优化,并设定意愿系数将多目标优化转换为单目标优化.仿真结果表明,所提出的区间预测方法具有较高的预测精度... 相似文献
11.
高精度光伏功率预测在光伏并网、电网安全稳定运行中起着重要作用。为获得可靠的预测功率,本文提出了一种基于因果卷积神经网络(Causal Convolutional Neural Network,CCNN)的预测模型。首先,将处理后的特征数据输入到因果卷积神经网络,在每一卷积层中,利用LSTM网络输入门对输入数据去噪,选出重要信息,而后经过1×1卷积核实现信息整合,同时降低运算复杂度,从而构建出CCNN预测模型。最后,采用巴西某发电厂真实数据对模型进行验证,并与人工神经网络(ANN)、LSTM和卷积神经网络(CNN)模型进行对比。结果表明,该方法可以很好地反映时序信息的动态特性,且预测精度优于对照模型,具有一定的实用价值。 相似文献
12.
13.
14.
该文提出一种基于极端梯度提升(XGBoost)模型和长短期记忆网络(LSTM)模型的短期光伏发电功率预测组合模型。根据短期光伏发电特性,首先分别建立XGBoost模型和LSTM模型,然后利用XGBoost模型进行初步预测增加特征,并利用误差倒数法将两模型组合起来进行预测。选取2018年光伏电站人工智能运维大数据处理分析大赛的数据集进行实验评估,最终结果表明,该文所构建的XGBoost-LSTM组合模型的均方根误差(RMSE )为0.214,将上述方法与随机森林、GBDT模型和单一的XGBoost模型和LSTM模型相比较,该文提出的方法具有更高的预测精度。 相似文献
15.
《可再生能源》2021,39(5)
提高光伏发电功率预测结果的精度对电网规划和调度具有重要意义。基于前向神经网络或回归分析法的传统预测模型因缺乏历史记忆能力而导致自身鲁棒性较差、适应能力较弱。为了解决上述问题,文章提出了一种基于LSTM网络的光伏发电功率短期预测方法。在预处理过程中,文章先将天气类型依据日照晴朗指数量化为具体数值;然后,利用主成分分析法将与光伏发电功率相关性较高的多元数据序列进行降维,得到主成分数据序列;最后,建立基于LSTM网络的光伏发电功率短期预测模型,并将该模型的预测结果与BP网络预测模型和RNN网络预测模型的预测结果进行对比。模拟结果表明,基于LSTM网络的光伏发电功率短期预测模型能较好地反映时序数据的动态特性,预测精度较高,预测结果能够为电力调度部门提供可靠的数据支持。 相似文献
16.
光伏发电功率的准确预测对电网的稳定运行具有重要的意义。针对深度学习训练耗时长和宽度学习特征提取能力弱等问题,将门控循环单元(GRU)与宽度学习系统(BLS)相融合,提出了用于超短期光伏发电功率预测的GRU-BLS模型。先使用GRU训练序列样本,再将所学习到的隐特征作为新的输入特征,最后在BLS中构造特征节点和增强节点以形成最终的特征。所建立的模型在保留深度学习高预测精度的前提下,有效地缩短了模型的训练时间。在实际的光伏发电数据集上进行实验,评估所提模型在不同季节和天气类型下的性能。实验结果表明:与长短期记忆(LSTM),GRU,BLS和LSTM-BLS等模型相比,GRU-BLS的RMSE值降低了23.89%~75.68%,且TIC值和MAPE值也得到了显著改善。 相似文献
17.
为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气象数据进行最优特征的提取;然后,在集成多个机器学习模型的基础上,收集训练过程中的预测误差,通过最大似然估计获取预测误差的概率分布,得到预测区间的上下限;最后,结合集成学习模型预测得到光伏出力曲线,进而得到最终的日前光伏出力预测区间。最后通过算例验证了所提模型的可靠性与优越性。 相似文献
18.
针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电量分量预测值进行组合,获得最终发电量预测结果。实验结果表明,所提方法在公开数据集上对光伏发电量进行预测的均方误差、平均绝对误差、决定系数值分别为0.223 2,0.338 7,0.979 7,与其他方法相比具有更高的预测准确率和更小的误差。 相似文献
19.