共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声干扰对预测模型的影响,通过FE对每个子序列进行重组,使用一维CNN的局部连接及权值共享提取不同分量的特征,将CNN输出的特征融合并输入到BiLSTM模型中;利用BiLSTM模型建立历史数据之间的时间特征关系,得到光伏发电功率预测结果。与BiLSTM、CNN-BiLSTM、EEMD-CNN-BiLSTM、VMD-CNN-BiLSTM这4种模型进行比较,该文提出的VMD-FE-CNN-BiLSTM模型在光伏发电功率预测中具有较高的精确度和稳定性,满足光伏发电短期预测的要求。 相似文献
3.
针对城市分布式光伏电站在进行超短期功率预测时所需气象资料难以获取,在转折天气下光伏出力不确定性增加的问题,提出一种光伏功率超短期区间预测模型。首先该模型采用麻雀算法优化变分模态分解(VMD),在不同天气下将历史光伏出力分解成多个时序特征强的子模态;其次,通过长短期记忆神经网络LSTM对各子模态分别预测;再次,将各子模态的点预测结果叠加;算例验证结果表明:在各类天气条件下,所提模型相比于单纯使用气象因子的预测方法,具有更高的预测准确度和更强的适应性,同时也能在点预测的基础上提供较为准确的置信区间。 相似文献
4.
焦丕华;蔡旭;王乐乐;陈佳佳;曹云峰 《太阳能学报》2024,45(2):435-442
提出一种考虑数据分解和进化捕食策略的双向长短期记忆网络(BiLSTM)短期光伏发电功率预测模型。首先,针对大量高频分量且频率成分复杂的原始光伏发电功率,通过数据分解理论,提出互补集合经验模态分解(CEEMD)与矩阵运算的奇异值分解(SVD)融合的(SVD-CEEMD-SVD,SCS)方法,实现光伏发电功率数据的二次降噪。然后,建立进化捕食策略(EPPS)和BiLSTM的组合预测模型,以更好地挖掘模型的内在特征,提升功率预测精度。最后,以山东某地区实际光伏电站为例,验证模型在滤除光伏发电功率噪声和提升预测精度方面的有效性。 相似文献
5.
对比3类LSTM功率预测方法的误差以评价业务气象预报在光伏功率预测中的作用,及训练集、测试集的不同划分对预测精度的影响。这3类功率预测方法分别是:只使用光伏功率、使用光伏功率及气象观测、使用光伏功率及气象预报。气象预报因子使用了与光伏功率相关性最高的总辐照度。分析时间段为2020年1月1日—6月30日,气象预报来自于ECMWF和NOAA/NCEP。结果表明,对于长度有限的资料,训练集、测试集的不同划分对预测模型精度会产生一定的影响。如果可使用总辐照度的观测,则短期功率预测的相对误差可降低约2.3%。与只使用光伏功率相比,既使用光伏功率又使用气象预报,短期功率预测相对误差降低约2.1%。与NOAA/NCEP气象预报相比,ECMWF气象预报明显降低了功率预测的误差。相比于只使用光伏功率,增加气象预报可提高预测精度。 相似文献
6.
光伏发电功率的预测方法目前分为点值预测和区间预测两类,但点值预测方法难以适应光伏功率的随机性和波动性,因此,该文构建一种基于集合经验模态分解(EEMD)和混沌蚁狮算法(ALOCO)的支持向量机(SVM)光伏功率区间短期预测模型。首先,通过灰色关联度筛选出不同环境条件的相似日样本集,并利用EEMD将光伏出力序列分解成不同的本征模态函数;然后,利用混沌蚁狮算法对SVM的误差惩罚因子C和核函数参数γ进行优化,并利用分位数回归法对光伏的输出功率进行短期区间预测;最后,通过算例数据验证所建立模型的有效性。 相似文献
7.
针对新建光伏电站历史数据匮乏导致功率预测精度不足的问题,提出一种基于实例迁移学习的小样本光伏发电功率短期预测方法。首先,以一组丰富的长期运行光伏数据为源域,利用多核最大均值差异估计源域与目标域光伏数据的匹配相似性,筛选出高相似的迁移源域;然后,建立加权对抗双向长短期记忆网络,通过对抗学习赋予源域光伏样本权重以调整其数据分布,将调整后的源域数据充实目标域数据集,采用双向长短期记忆网络挖掘公共知识域中光伏发电功率序列与气象数据的双向时序关联特性,实现小样本条件下光伏功率的精准预测。结果表明:相较于传统深度学习和模型迁移方法,所提方法能有效提高历史数据有限条件下光伏功率的预测精度。 相似文献
8.
9.
10.
11.
针对高比例光伏接入电网时,光伏出力的波动性会严重影响电力系统稳定运行的问题提出一种基于平均影响值与改进粒子群优化神经网络的组合式光伏出力短期预测模型。首先,采用直接预测法,选取总辐射量、直接辐射量、散射量、相对湿度、气温、风速和降雨量7个影响光伏出力的因素,构建MIV-PSO-BPNN模型,基于Rapid Miner数据挖掘得出降雨量对光伏出力平均影响值为0.0099,影响较小,不作为模型输入变量。然后,用改进PSO优化算法对BPNN的权值与阈值进行优化。最后,利用上海浦东国际机场T2-2光伏电站数据进行验证,结果表明MIV-PSO-BPNN模型对光伏出力预测有效,在实际中有一定应用价值。 相似文献
12.
13.
光伏序列具有的较高复杂性对光伏发电功率的预测精度产生了极大影响,对此提出一种基于VMD-LSTM与误差补偿的光伏发电超短期功率预测模型。该模型第1阶段采用VMD算法将原始功率序列分解为若干个不同的模态,并对其建立对应的LSTM网络模型进行预测,通过对各模态的预测结果求和得到初始预测功率;第2阶段采用LSTM网络对误差序列进行误差补偿预测,然后将初始预测功率和误差预测功率求和得到最终预测结果。仿真结果表明,该预测模型对天气具有较高的适应性,预测精度达到97%以上。 相似文献
14.
针对光伏功率预测,提出一种光伏发电出力不确定性量化分析的两阶段模型。第1阶段,首先选取待预测日之前一段时间的光伏输出功率历史数据作为训练样本,引入模糊熵(FE)将不同天气类型量化并作为输入量;然后利用集成经验模态分解(EEMD)将光伏发电功率时间序列分解为多个模态分量,再利用Hurst指数分析将不同模态分量重构为中尺度和宏尺度2个子序列,基于双向长短期记忆神经网络并引入注意力机制对重构后的2个子序列分别进行预测;最后对中尺度子序列对应的误差序列进行修正,得到光伏发电出力的点预测结果。第2阶段,根据第1阶段点预测结果得到的误差统计,采用核密度估计(KDE)方法预测光伏发电出力的区间,分别获取在95%、90%、85%及80%置信水平下的区间覆盖率(PICP)。应用中国西北地区某光伏电站运行数据作为算例,验证了该文预测方法的有效性。 相似文献
15.
将点值预测扩展为区间预测,利用光伏出力相似日样本中区间中点和区间半径进行预测,采用常规的BP神经网络算法、GM(1,1)灰色算法、支持向量机(SVM)算法分别预测,利用人群搜索算法(SOA)对各种区间预测的组合权值进行优化,并设定意愿系数将多目标优化转换为单目标优化.仿真结果表明,所提出的区间预测方法具有较高的预测精度... 相似文献
16.
高精度光伏功率预测在光伏并网、电网安全稳定运行中起着重要作用。为获得可靠的预测功率,本文提出了一种基于因果卷积神经网络(Causal Convolutional Neural Network,CCNN)的预测模型。首先,将处理后的特征数据输入到因果卷积神经网络,在每一卷积层中,利用LSTM网络输入门对输入数据去噪,选出重要信息,而后经过1×1卷积核实现信息整合,同时降低运算复杂度,从而构建出CCNN预测模型。最后,采用巴西某发电厂真实数据对模型进行验证,并与人工神经网络(ANN)、LSTM和卷积神经网络(CNN)模型进行对比。结果表明,该方法可以很好地反映时序信息的动态特性,且预测精度优于对照模型,具有一定的实用价值。 相似文献
17.
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 相似文献
18.
19.
周育才;肖添;谢七月;付强;钟敏 《太阳能学报》2024,45(4):512-518
考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分析(PCA)降维和FCM聚类算法将数据按天气类型分为阴、晴、雨;最后通过HPO筛选得出BILSTM神经网络的最佳超参数,避免因超参数设置不佳对实验带来的影响,进一步提高实验的准确性和模型的泛化能力。最后通过预测和对比实验进行分析,验证所提方法的优越性。 相似文献