共查询到20条相似文献,搜索用时 15 毫秒
1.
Chip-based quantitative capillary electrophoresis/mass spectrometry determination of drugs in human plasma 总被引:4,自引:0,他引:4
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the on-chip separation and coupled electrospray detection of selected small drug molecule compounds. These studies include the quantitative determination of carnitine and acetylcarnitine in analytical standard solutions as well as imipramine and desipramine in fortified human plasma samples. A clinical human plasma sample was also analyzed following the normal administration of desipramine to a volunteer, and the parent drug was determined using the described chipbased CE/MS technique. In each instance, stable isotope-incorporated internal standards were used. The chip-based CE system was microfabricated from glass and coupled to a micro ion spray device constructed in-house. The atmospheric pressure ionization system employed in this work was a PE Sciex API III tandem triple quadrupole system operated in the selected ion monitoring (SIM) mode. The results from the work reported here demonstrate the feasibility for carrying out rapid (30 s) chipbased quantitative CE/MS determinations of samples containing small-molecule compounds. Using SIM CE/ MS techniques, the described API III quadrupole system provided acceptable ion current electropherograms from subpicomole levels of the targeted compounds loaded onto the chip. The corresponding electropherograms for the standard solution of carnitines at the 1-500 microg/mL level were obtained via SIM CE/MS techniques (R2 > 0.99). In addition, analyses of fortified samples of imipramine desipramine were measured relative to their corresponding d3 internal standards to obtain calibration curves ranging from 5 to 500 microg/mL in human plasma (R2 > 0.99). The intra-assay precision ranged from 4.1 to 7.3% RSD. The intra-assay accuracy ranged from 94.0 to 104%. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric determination in applications for bioanalytical measurements for these important compounds in synthetic mixtures and human plasma extracts. 相似文献
2.
A simple procedure was developed for preparing a carbon-coated fused-silica capillary for use in sheathless capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The tapered capillary tip was smeared with a marker pen before coating with carbon using a soft pencil. The layer from the ink of the marker pen was critical to the preparation of the carbon-coated capillary. The fabrication of a carbon-coated fused-silica capillary tip requires less than 1 min. The stability of this carbon-coated fused-silica capillary is examined, and its utility in on-line sheathless CE/ESI-MS is demonstrated with the separation of berberine, coptisine, and palmatine chlorides. Although the carbon-coated fused-silica capillary tip is not as rugged as a gold-coated capillary, it is durable enough for sheathless CE/ESI-MS applications. Moreover, it is easy to refurbish the column once the performance of the tip is degraded. 相似文献
3.
A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids. 相似文献
4.
Identification of microbial mixtures by capillary electrophoresis/selective tandem mass spectrometry
In this paper, we propose a new strategy for identifying specific bacteria in bacterial mixtures by using CE-selective MS/MS of peptide marker ions associated with the bacteria of interest. We searched the CE-MS/MS spectra acquired from the proteolytic digests of pure bacterial cell extracts against protein databases. The identified peptides that match the protein associated with the corresponding species were selected as marker ions for bacterial identification. Specific peptide marker ions were obtained for each of the following three pathogens: Pseudomonas aeruginasa, Staphylococcus aureus, and Staphylococcus epidermidis. To identify a bacterial species in a sample, we performed CE-MS/MS analysis of the selected marker ions in the proteolytic digest of the cell extract and then performed protein database searches. The selected peptides that we identified correctly from Xcorr values ranking at the top of the search results allowed us to identify the corresponding bacterial species present in the sample. We have applied this method successfully to the identification of various mixtures of the three pathogens. Even minor bacterial species present at a concentration of 1% can be identified with great confidence. This method for CE-MS/MS analysis of bacteria-specific marker peptides provides excellent selectivity and high accuracy when identifying bacterial species in complex systems. In addition, we have used this approach to identify P. aeruginasa in a saliva sample spiked with E.coli and P. aeruginasa. 相似文献
5.
Determination of bioactive peptides using capillary zone electrophoresis/mass spectrometry. 总被引:1,自引:0,他引:1
Mixtures of bioactive peptides have been analyzed by capillary zone electrophoresis/mass spectrometry (CZE/MS) using an on-line coaxial continuous-flow fast atom bombardment interface. High separation efficiencies (up to 410,000 theoretical plates) were obtained from low femtomole levels of peptides. The analysis of basic peptides was accomplished by using aminopropyl-silylated CZE columns to minimize zone broadening due to adsorption effects. CZE/MS/MS data were acquired from femtomole levels of peptides in electrophoretic real time. 相似文献
6.
We report a hydrophilic interaction liquid chromatography (HILIC) separation with tandem mass spectrometry (MS) detection method for analysis of seven urinary estrogen conjugates. HILIC separation employing a mobile phase with high organic solvent content resulted in enhanced electrospray ionization efficiency and MS sensitivity compared with reversed-phase (RP) LC-MS methods. Solid-phase extraction (SPE) was used to further improve the limit of detection and to eliminate interferences for the analysis of urine samples. No hydrolysis or derivatization was required in the sample pretreatment. This SPE/HILIC-MS/MS method provided limits of quantification (LOQs at S/N = 10) for the seven conjugates ranging from 2 to 1000 pg/mL with only 1 mL of urine sample, representing an improvement of 1 order of magnitude over the RPLC tandem MS methods previously reported. This method provided a linear dynamic range of 3 orders of magnitude, recovery of 92-109%, intraday accuracy of 84-109%, intraday precision of 1-14%, interday accuracy of 80-111%, and interday precision of 1-22%. We have successfully applied this technique to determine the seven estrogen conjugates in urine samples of a pregnant woman and found unique concentration changes of six estrogen conjugates at different stages of pregnancy while the concentration of estriol-3-glucuronide (E3-3G) remained constant. We further studied the profiles of individual estrogen conjugates in breast cancer patients before and after treatment and found patient-dependent effects of aromatase inhibitor treatment on estrogen phase-II metabolism, which have not been reported previously. This study demonstrates the potential clinical application of the HILIC-MS/MS technique for sensitive monitoring of the changes of urinary estrogen conjugates in a clinical setting. 相似文献
7.
A colloidal graphite-coated emitter is introduced for sheathless capillary electrophoresis/nanoelectrospray ionization time-of-flight mass spectrometry (CE/ESI-TOFMS). The conductive coating can be produced by brushing the capillary tip to construct a fine layer of 2-propanol-based colloidal graphite. The fabrication involves a single step and requires less than 2 min. Full cure properties develop in approximately 2 h at room temperature and then the tip is ready for use. The coated capillary tip is applied as a sheathless electrospray emitter. The emitter has proven to bear stable electrospray and excellent performance for 50 microm i.d. x 360 microm o.d. and 20 microm i.d. x 360 microm o.d. capillaries within the flow rate of 80-500 nL/min; continuous electrospray can last for over 200 h in positive mode. Baseline separation and structure elucidation of two clinically interesting basic drugs, risperidone and 9-hydroxyrisperidone, are achieved by coupling pressure-assisted CE to ESI-TOFMS using the described sheathless electrospray emitter with a bare fused-silica capillary at pH 6.7. It is found that the signal intensity of m/z in sheathless CE/ESI-TOFMS at pH 6.7 is approximately 50 times higher than that at pH 9.0 for the two analytes, although the electroosmotic flow (EOF) at pH 9.0 provides sufficient flow rate (approximately 150 nL/min) to maintain electrospray. 相似文献
8.
Characterization of the microdialysis junction interface for capillary electrophoresis/microelectrospray ionization mass spectrometry 总被引:1,自引:0,他引:1
A capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) interface, based on an electric circuit across a microdialysis membrane surrounding a short capillary segment closely connected to the separation capillary terminus, is demonstrated to be sensitive, efficient, and rugged. A microspray type ionization emitter produces a stable electrospray at the low flow rates provided by CE and thus avoids both the need for a makeup liquid flow provided by liquid junction or sheath flow interfaces and the subsequent dilution and reduction in sensitivity. Reproducibility studies and comparisons with CE/UV and the CE/sheath flow interface with ESI-MS are presented. Additionally, postrun acidification via the microdialysis junction interface is demonstrated and shown to be capable of denaturing the holomyoglobin protein noncovalent complex while maintaining separation efficiency. 相似文献
9.
Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry 总被引:10,自引:0,他引:10
A method for the determination of underivatized amino acids based on capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) is described. To analyze free amino acids simultaneously a low acidic pH condition was used to confer positive charge on whole amino acids. The choice of the electrolyte and its concentration influenced resolution and peak shape of the amino acids, and 1 M formic acid was selected as the optimal electrolyte. Meanwhile, the sheath liquid composition had a significant effect on sensitivity and the highest sensitivity was obtained when 5 mM ammonium acetate in 50% (v/v) methanol-water was used. Protonated amino acids were roughly separated by CE and selectively detected by a quadrupole mass spectrometer with a sheath flow electrospray ionization interface. Under the optimized conditions, 19 free amino acids normally found in proteins and several physiological amino acids were well determined in less than 17 min. The detection limits for basic amino acids were between 0.3 and 1.1 mumol/L and for acidic and low molecular weight amino acids were less than 6.0 mumol/L with pressure injection of 50 mbar for 3 s (3 nL) at a signal-to-noise ratio of 3. This method is simple, rapid, and selective compared with conventional techniques and could be readily applied to the analysis of free amino acids in soy sauce. 相似文献
10.
A robust interface has been developed for interfacing micellar electrokinetic chromatography (MEKC) and nonvolatile buffer capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS). The interface consists of two parallel capillaries for separation (50 microm i.d. x 155 microm o.d.) and makeup (50 microm i.d. x 155 microm o.d.) housed within a larger capillary (530 microm i.d. x 690 microm o.d.). The capillaries terminate in a single tapered tip having a beveled edge. The use of a tapered beveled edge results in a greater tip orifice diameter (75 microm) than in a previous design from our laboratory (25 microm) that used a flat tip. While maintaining a similar optimum flow rate and consequently similar sample dilution, a 75-microm beveled emitter is more rugged than a 25-microm flat tip. Furthermore, the incorporation of a sheath liquid capillary allows the compositions of the final spray solution to be controlled. The application of this novel CE/ESI-MS interface was demonstrated for MEKC using mixtures of triazines (positive ion mode) and phenols (negative ion mode). The ability to perform CE/ESI-MS using a nonvolatile buffer was demonstrated by the analysis of gangliosides with a buffer consisting of 40 mM borate and 20 mM alpha-cyclodextrin. 相似文献
11.
A method for simultaneous determination of anionic metabolites based on capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry is described. To prevent current drop by the system, electroosmotic flow (EOF) reversal by using a cationic polymer-coated capillary was indispensable. A mixture containing 32 standards including carboxylic acids, phosphorylated carboxylic acids, phosphorylated saccharides, nucleotides, and nicotinamide and flavin adenine coenzymes of glycolysis and the tricarboxylic acid cycle pathways were separated by CE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. Key to the analysis was EOF reversal using a cationic polymer-coated capillary and an electrolyte system consisting of 50 mM ammonium acetate, pH 9.0. The relative standard deviations of the method were better than 0.4% for migration times and between 0.9% and 5.4% for peak areas. The concentration detection limits for these metabolites were between 0.3 and 6.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL); i.e., mass detection limits ranged from 9 to 200 fmol, at a signal-to-noise ratio of 3. This method was applied to the comprehensive analysis of metabolic intermediates extracted from Bacillus subtilis, and 27 anionic metabolites could be directly detected and quantified. 相似文献
12.
A new on-line capillary zone electrophoresis/mass spectrometry (CZE/MS), constant pressure-assisted electrokinetic injection (PAEKI), for the analysis of negatively charged nucleotides is reported. PAEKI uses an applied pressure to counterbalance the reverse electroosmotic flow in the capillary column during sample injection, while taking advantage of the field amplification in the sample medium. At balance, the running buffer in the column is stationary, permitting potentially unlimited injection time, and hence unlimited sample enrichment power. The ability of PAEKI to maintain a narrow sample zone over a long injection time seems to be a result of the formation of a high ion concentration band at the boundary of the two media due to rapid deceleration of the migrating ions at the boundary. The injected amount of analytes proved to be linearly proportional to both the field amplification factor, which is expressed as the ratio of resistivities of sample medium to running buffer, and the injection time, which extended up to 1200 s in CZE/MS and 3600 s in CZE/UV. For a 300-s on-line PAEKI injection in CZE/MS, 3 orders of magnitude sample enhancement (5000-fold enrichment) could be observed for the four single nucleotides without compromising separation efficiency and peak shape, and an achievement of detection limits between 0.04 and 0.07 ng/mL. With appropriate sample cleanup, PAEKI can be used in the analysis of single nucleotides in enzyme-digested DNA. 相似文献
13.
It has always been assumed that electrical contact at the capillary outlet is a necessary requirement when coupling capillary electrophoresis (CE) with electrospray ionization mass spectrometry (ESI-MS). In this study, we used a pulled bare-capillary tip as the ESI emitter, but neither was it coated with any electrically conductive materials nor was a high external voltage applied on its outlet. In this paper, we demonstrate that this straightforward approach may be used to generate multiply charged ions of proteins and peptides through electrospray ionization. Our results indicate that peptides and proteins, including bradykinin, cytochrome c, myoglobin, and tryptic digest products that elute from a pulled bare-capillary tip can be detected directly by ESI-MS using the tapered bare-capillary interface. Thus, we have demonstrated that CE and ESI-MS may be combined successfully without the need to modify the outlet of the capillary tip with an electrically contacting material. 相似文献
14.
A tapered capillary tip containing a beveled edge was developed for use in sheathless capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS). The optimal flow rate of a 75-microm-i.d., 90-microm-o.d. beveled tapered capillary tip was similar to a conventional flat tapered tip with a 25-microm orifice. Using a mixture of coptisine, berberine, and palmatine chloride, the sheathless CE/ ESI-MS sensitivity of a beveled 75 microm tapered tip capillary was found to be similar to a 25 microm flat tip. Although both tips offer similar CE/ESI-MS sensitivity, the beveled tapered capillary tip is more rugged and durable than a conventional 25-microm tapered capillary because of the larger outside diameter and inside diameter. To make electrical contact, the capillary tip was smeared with paint marker followed by the application of a carbon coating using a graphite pencil. Using this refined carbon-coating procedure, the capillary tip can be operated with aprotic solvents. 相似文献
15.
A sheathless nanoflow electrospray interface for on-line capillary electrophoresis mass spectrometry 总被引:2,自引:0,他引:2
A novel, rugged capillary electrophoresis-electrospray ionization (CE-ESI) interface where the separation column, an electrical porous junction, and the spray tip are integrated on a single piece of a fused-silica capillary is described. ESI is accomplished by applying an electrical potential through an easily prepared porous junction across a 3-4-mm length of fused silica. A stable electrospray is produced at nanoflow rates generated in the capillary by electrophoretic and electroosmotic forces. The interface is particularly well suited for the detection of low-femtomole levels of proteins and peptides. The ruggedness of this interface was evident by the continuous operation of the same column for over a 2-week period with no detectable deterioration in separation or electrospray performance. The new interface was used for the LC-ESI-MS separation and analysis of peptides and proteins. Injection of 25 fmol of [Glu1]-fibrinopeptide B using the new device produced a CE-ESI-MS electropherogram with a signal-to-noise ratio of over 100 for this peptide. 相似文献
16.
Identification of proteins in complexes by solid-phase microextraction/multistep elution/capillary electrophoresis/tandem mass spectrometry. 总被引:6,自引:0,他引:6
A method to directly identify proteins in complex mixtures by solid-phase microextraction (micro-SPE)/multistep elution/capillary electrophoresis (CE)/tandem mass spectrometry (MS/MS) is described. A sheathless liquid-metal junction interface is used to interface CE and electrospray ionization MS/MS. A subfemtomole detection limit is achieved for protein identification through database searching using MS/MS data. The SPE serves as a semiseparation dimension using an organic-phase step-elution gradient in combination with the second separation dimension for increased resolving power of complex peptide mixtures. This approach improves the concentration detection limit for CE and allows more proteins in complex mixtures to be identified. A 75-protein complex from yeast ribosome is analyzed using this method and 80-90% of the proteins in the complex can be identified by searching the database using the MS/MS data from a complete analysis. This multidimensional CE/MS/MS methodology provides an alternative to multidimensional liquid chromatography/MS/MS for direct identification of small amounts of protein in mixtures. 相似文献
17.
We describe a method, based on pressure-assisted capillary electrophoresis coupled to electrospray ionization mass spectrometry (PACE/ESI-MS), that allows the simultaneous and quantitative analysis of multivalent anions, such as citrate isomers, nucleotides, nicotinamide-adenine dinucleotides, and flavin adenine dinucleotide, and coenzyme A (CoA) compounds. Key to the analysis was using a noncharged polymer, poly(dimethylsiloxane), coated to the inner surface of the capillary to prevent anionic species from adsorbing onto the capillary wall. It was also necessary to drive a constant liquid flow toward the MS by applying air pressure to the inlet capillary during electrophoresis to maintain a conductive liquid junction between the capillary and the electrospray needle. Although theoretical plates were inferior to those obtained by CE/ESI-MS using a cationic polymer-coated capillary, the PACE/ESI-MS method improved reproducibility and sensitivity of these anions. Eighteen anions were separated by PACE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. The relative standard deviations (n = 6) of the method were better than 0.6% for migration times and between 1.4% and 6.2% for peak areas. The detection limits for these species were between 0.4 and 3.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL), that is, mass detection limits calculated in the range from 12 to 110 fmol at a signal-to-noise ratio of 3. The utility of the method was demonstrated by analysis of citrate isomers, nucleotides, dinucleotides, and CoA compounds extracted from Bacillus subtilis cells. 相似文献
18.
The development of a system capable of the speed required for on-line capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) of tryptic digests is described. The ion trap storage/reflectron time-of-flight (IT/reTOF) mass spectrometer is used as a nonscanning detector for rapid CE separation, where the peptides are ionized on-line using electrospray ionization (ESI). The ESI produced ions are stored in the ion trap and dc pulse injected into the reTOF-MS at a rate sufficient to maintain the separation achieved by CE. Using methodology generated by software and hardware developed in our lab, we can produce SWIFT (Stored Waveform Inverse Fourier Transform) ion isolation and TICKLE activation/fragmentation voltage waveforms to generate MS/MS at a rate as high as 10 Hz so that the MS/MS spectra can be optimized on even a 1-2 s eluting peak. In CE separations performed on tryptic digests of dogfish myelin basic protein (MBP) where eluting peaks 4-8 s wide are observed, it is demonstrated that an acquisition rate of 4 Hz provides > 20 spectra/peak and is more than sufficient to provide optimized MS/MS spectra of each of the eluting peaks in the electropherogram. The detailed structural analysis of dogfish MBP including several posttranslational modifications using CE-MS and CE-MS/MS is demonstrated using this method with < 10 fmol of material consumed. 相似文献
19.
A dependable and stable CZE/ESI-MS interface has been constructed. To avoid instabilities in both, the capillary electrophoretic separation and the electrospray, the second of the three concentric capillaries in the three-layered sprayer has been replaced by an aluminum-coated fused-silica capillary with an inner diameter only slightly greater than the outer diameter of the separation capillary. By this means, the otherwise often observed destruction of the separation capillary ("electrodrilling") can be avoided completely due to the suppression of electrochemical processes leading to gas bubble formation at the tip of the sprayer. With some examples taken from different biochemical areas and by separation of natural compounds, the capability and the reliability of the modified sprayer as the central part of the interface are demonstrated. 相似文献
20.
Matrix-assisted laser desorption mass spectrometry of proteins isolated by capillary zone electrophoresis. 总被引:3,自引:0,他引:3
A simple method for the off-line coupling of laser desorption mass spectrometry (LDMS) and capillary zone electrophoresis (CZE) is described. Representative mass spectra of subpicomole quantities of proteins isolated from CZE are presented and discussed. The current detection limit for bovine alpha-lactalbumin is 100 fmols injected onto the CZE column. Horse heart myoglobin was demonstrated to be stable in CHES/KCl, a CZE buffer, for at least 1 month, suggesting that some isolates can be safely stored for long time periods prior to LDMS analysis. Protein stability in 0.1% aqueous trifluoroacetic acid (TFA), a common solvent for LDMS, must also be considered. In the special case of porcine pepsinogen, significant (greater than 50%) degradation was observed within 5 min in TFA. In favorable cases, mass measurement accuracies of +/- 0.02% were obtained for protein isolates. Factors limiting mass measurement accuracy are presented. Finally, the possibility of identifying protein isolates, by combining N-terminal sequencing, molecular mass measurements, and selective peptide "mapping" procedures, is discussed. 相似文献