首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the on-chip separation and coupled electrospray detection of selected small drug molecule compounds. These studies include the quantitative determination of carnitine and acetylcarnitine in analytical standard solutions as well as imipramine and desipramine in fortified human plasma samples. A clinical human plasma sample was also analyzed following the normal administration of desipramine to a volunteer, and the parent drug was determined using the described chipbased CE/MS technique. In each instance, stable isotope-incorporated internal standards were used. The chip-based CE system was microfabricated from glass and coupled to a micro ion spray device constructed in-house. The atmospheric pressure ionization system employed in this work was a PE Sciex API III tandem triple quadrupole system operated in the selected ion monitoring (SIM) mode. The results from the work reported here demonstrate the feasibility for carrying out rapid (30 s) chipbased quantitative CE/MS determinations of samples containing small-molecule compounds. Using SIM CE/ MS techniques, the described API III quadrupole system provided acceptable ion current electropherograms from subpicomole levels of the targeted compounds loaded onto the chip. The corresponding electropherograms for the standard solution of carnitines at the 1-500 microg/mL level were obtained via SIM CE/MS techniques (R2 > 0.99). In addition, analyses of fortified samples of imipramine desipramine were measured relative to their corresponding d3 internal standards to obtain calibration curves ranging from 5 to 500 microg/mL in human plasma (R2 > 0.99). The intra-assay precision ranged from 4.1 to 7.3% RSD. The intra-assay accuracy ranged from 94.0 to 104%. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric determination in applications for bioanalytical measurements for these important compounds in synthetic mixtures and human plasma extracts.  相似文献   

2.
A miniaturized ion sprayer device is described which is suitable for coupling with chip-based analytical separation devices, multiwell plates, or surfaces containing residues of prepared samples. Two versions of a similar device are described. A "microsprayer" device suitable for coupling to the terminal edge of a capillary electrophoresis (CE) chip is constructed from modified 1/16-in. HPLC fittings. This microsprayer employs a free-standing liquid junction formed via continuous delivery of a flow (2-6 microL/min) of suitable solvent which carries the CE effluent through a pneumatically assisted electrospray (ion spray) needle positioned in front of an atmospheric pressure ionization (API) mass spectrometer. A related but larger "minisprayer" device is also described which employs the same features as the microsprayer, but with an extended sampling capillary tube which can reach into the depths of 96-, 384-, and 1536-multiwell plates containing either sample solutions or dried sample residues. The minisprayer may be positioned in front of an API ion sampling orifice and the multiwell plate positioned stepwise from sample to sample for analysis of trace samples contained in the wells. The resulting infusion-ion spray mass spectrometric analyses can provide sequential analysis of previously prepared biological samples containing small drug compounds, proteins, and related compounds. This same device is also shown to be useful for sampling from a surface containing trace level compounds of biological interest. Results are shown that demonstrate microscale separations and selected ion monitoring (SIM) capillary electrophoresis/mass spectrometry (CE/MS) detection of berberine and palmatine using the microsprayer. SIM ion spray determination of a 2 ng/microL solution of berberine contained as a dry residue in the bottom of a 384-well plate as well as full-scan electrospray mass spectra for low-picomole levels of cytochrome c contained in a 1536-well microtiter plate are shown. The respective micro- and minisprayer devices provide a simple yet effective means of transferring trace-level samples either from a microscale or chip-based separation device as well as samples contained in multiwell plates which are increasingly employed in high-throughput applications in the pharmaceutical industry.  相似文献   

3.
A polymeric microfluidic chip for CE/MS determination of small molecules   总被引:4,自引:0,他引:4  
A polymeric microfluidic chip made of Zeonor 1020 was fabricated using conventional embossing techniques to perform capillary electrophoresis for selected ion monitoring and selected reaction monitoring mass spectrometric detection of small molecules. A silicon master was microfabricated using photolithographic and dry etching processes. The microfluidic channel was embossed in the plastic from a silicon master. The embossed chip was thermally bonded with a Zeonor 1020 cover to form an enclosed channel. This channel (60-microm width, 20-microm depth, 2.0- and 3.5-cm length) provided capillary electrophoresis (CE) separation of polar small molecules without surface treatment of the polymer. A microsprayer coupled via a microliquid junction provided direct electrospray mass spectrometric detection of CE-separated components. An electric field of 0.5-2 kV/cm applied between the microsprayer and a separation buffer reservoir produced a separation of carnitine, acylcarnitine, and butylcarnitine with separation efficiencies ranging from 1,650 to 18,000 plates. Injection quantities of 0.2 nmol of these compounds produced a separation of the targeted polar small molecules without surface treatment of the polymer-abundant ion current signals and baseline separation of these compounds in less than 10 s. These results suggest the feasibility of polymeric chip-based devices for ion spray CE/MS applications.  相似文献   

4.
A novel microfabricated device was implemented for facile coupling of capillary electrophoresis with mass spectrometry (CE/MS). The device was constructed from glass wafers using standard photolithographic/wet chemical etching methods. The design integrated (a) sample inlet ports, (b) the separation channel, (c) a liquid junction, and (d) a guiding channel for the insertion of the electrospray capillary, which was enclosed in a miniaturized subatmospheric electrospray chamber of an ion trap MS. The replaceable electrospray capillary was precisely aligned with the exit of the separation channel by a microfabricated guiding channel. No glue was necessary to seal the electrospray capillary. This design allowed simple and fast replacement of either the microdevice or the electrospray capillary. The performance of the device was tested for CE/MS of peptides, proteins, and protein tryptic digests. On-line tandem mass spectrometry was used for the structure identification of the protein digest products. High-efficiency/high-resolution separations could be obtained on a longer channel (11 cm on-chip) microdevice, and fast separations (under 50 s) were achieved with a short (4.5 cm on-chip) separation channel. In the experiments, both electrokinetic and pressure injections were used. The separation efficiency was comparable to that obtained from conventional capillary electrophoresis.  相似文献   

5.
A superior approach involving nano-high-performance liquid chromatography (nano-HPLC) in on-line conjunction to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QTOF MS) and tandem MS for screening and structural characterization of complex mixtures of neutral glycosphingolipids (GSLs) is here described. Neutral GSLs purified from human erythrocytes were efficiently separated according to the differences in carbohydrate chain length by an optimized nano-HPLC protocol and flow-through detected by ESI QTOF MS at the low femtomole level. Additionally, GSL species were accurately distinguished from the accompanying lipids in the mixture, thus permitting the determination of detailed structural characteristics by data-dependent analysis for identification of GSL constitution within single experiments. An alternative nano-HPLC/ESI QTOF MS approach was designed for dissection of unsaturation/saturation degree of the ceramide moieties defining the hydrophobic portion of GSLs and subsequent localization by nano-HPLC/ESI QTOF MS/MS of the -CH=CH- within the ceramide regions. The method is fast, highly sensitive, and high-throughput amenable and is highlighted as a new and valuable analytical dimension in glycolipidomics.  相似文献   

6.
A strategy for detection of carnitine and acylcarnitines is introduced. This versatile system has four components: (1) isolation by protein precipitation/desalting and cation-exchange solid-phase extraction, (2) derivatization of carnitine and acylcarnitines with pentafluorophenacyl trifluoromethanesulfonate, (3) sequential ion-exchange/reversed-phase chromatography using a single non-end-capped C8 column, and (4) detection of carnitine and acylcarnitine pentafluorophenacyl esters using an ion trap mass spectrometer. Recovery of carnitine and acylcarnitines from the isolation procedure is 77-85%. Derivatization is rapid and complete with no evidence of acylcarnitine hydrolysis. Sequential ion-exchange/reversed-phase HPLC results in separation of reagent byproducts from derivatized carnitine and acylcarnitines, followed by reversed-phase separation of carnitine and acylcarnitine pentafluorophenacyl esters. Detection by MS/MS is highly selective, with carnitine pentafluorophenacyl ester yielding a strong product ion at m/z 311 and acylcarnitine pentafluorophenacyl ester fragmentation yielding two product ions: (1) loss of m/z 59 and (2) generation of an ion at m/z 293. To demonstrate this analytical strategy, phosphate buffered serum albumin was spiked with carnitine and 15 acylcarnitines and analyzed using the described protein precipitation/desalting and cation-exchange solid-phase extraction isolation, derivatization with pentafluorophenacyl trifluoromethanesulfonate, chromatography using the sequential ion-exchange/reversed-phase chromatography HPLC system, and detection by MS and MS/MS. Successful application of this strategy to the quantification of carnitine and acetylcarnitine in rat liver is shown.  相似文献   

7.
A screening technique has been developed that allows the rapid, real-time detection and identification of major transformation products of organic contaminants during aqueous oxidation experiments. In this technique, a target contaminant is dissolved in buffered water and chlorinated by the addition of sodium hypochlorite to give a free chlorine residual of 3 mg/L. Solution from the reaction vessel is combined with methanol and pumped directly into the electrospray ionization source of a quadrupole time-of-flight mass spectrometer (QTOF MS). The real-time decay of the target contaminant and the formation/decay of transformation products are then monitored using the QTOF MS. Subsequently, accurate mass measurements with internal mass calibration (<5 ppm mass error) and product ion scans are employed to identify these transformation products. Unlike other techniques, it requires no liquid chromatography, derivatization, or quenching of residual chlorine, all of which can interfere with transformation product analysis. To validate the technique, aqueous chlorination experiments were performed on triclosan, a previously studied environmental contaminant. Earlier research showing that triclosan underwent chlorine addition to form mono- and dichlorinated transformation products was successfully reproduced, demonstrating the feasibility of the technique. In addition, the technique revealed the formation of a stable oxygen radical-containing transformation product resulting from the oxidation of either mono- or dichlorinated triclosan. This triclosan transformation product was determined to have an empirical formula of C12H4O3Cl4 with 3.9 ppm mass error. Furthermore, atorvastatin, a commonly prescribed medication and environmental contaminant, was subjected to aqueous chlorination and studied with the technique. Atorvastatin underwent hydroxylation to form two transformation products with the empirical formulas C33H34FN2O6 (1.8 ppm mass error) and C26H29O5NF (2.9 ppm mass error).  相似文献   

8.
The formation of multiply charged molecular ions via the field-assisted ion evaporation mechanism during electrospray ionization enables the use of an atmospheric pressure ionization quadrupole mass spectrometer system for characterizing biologically important peptides. The straightforward implementation of high-performance liquid chromatography (HPLC) into this new strategy to determine the molecular weight of tryptic peptides via the pneumatically assisted electrospray (ion spray) interface is presented. Examples utilizing both microbore (1.0 mm) and standard bore (4.6 mm) inside diameter columns are shown for the LC/MS molecular weight determination of tryptic peptides in methionyl-human growth hormone (met-hGH). Injected levels from 50 to 75 pmol of tryptic digest onto 1 mm i.d. HPLC columns provided full-scan LC/MS or LC/MS/MS results without postcolumn splitting of the effluent. When standard 4.6 mm i.d. HPLC columns were used, a 20:1 postcolumn split was utilized, which required from 1 to 5 nmol of injected tryptic digest for full-scan LC/MS or LC/MS/MS results. Collision-induced dissociation (CID) mass spectra resulting from either "infusion" or on-line LC/MS/MS analysis of the abundant doubly charged ions that predominate for tryptic peptides under electrospray conditions provided structurally useful sequence information for met-hGH and human hemoglobin tryptic digests. The slower mass spectrometer scan rate used during infusion of sample provides more accurate mass assignments than on-line LC/MS or LC/MS/MS, but the latter on-line experiments preclude ambiguities caused by matrix or component interferences. However, in some instances very weak CID product ions preclude complete tryptic peptide structural characterization based upon the CID data alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The coupling of microfabricated devices to nanoelectrospray mass spectrometers using both a triple quadrupole and a quadrupole time-of-flight mass spectrometer (QqTOF MS) is presented for the analysis of trace-level membrane proteins. Short disposable nanoelectrospray emitters were directly coupled to the chip device via a low dead volume connection. The analytical performance of this integrated device in terms of sensitivity and reproducibility was evaluated for standard peptide mixtures. A concentration detection limit ranging from 3.2 to 43.5 nM for different peptides was achieved in selected ion monitoring, thus representing a 10-fold improvement in sensitivity compared to that of microelectrospray using the same chip/mass spectrometer. Replicate injections indicated that reproducibility of migration time was typically less than 3.1% RSD whereas RSD values of 6-13% were observed on peak areas. Although complete resolution of individual components is not typically achieved for complex digests, the present chip capillary electrophoresis (chip-CE) device enabled proper sample cleanup and partial separation of multicomponent samples prior to mass spectral identification. Analyses of protein digests were typically achieved in less than 1.5 min with peak widths of 1.8-2.5 s (half-height definition) as indicated from individual reconstructed ion electropherograms. The application of this chip-CE/QqTOF MS system is further demonstrated for the identification of membrane proteins which form a subset of the Haemophilus influenzae proteome. Bands first separated by 1D-gel electrophoresis were excised and digested, and extracted tryptic peptides were loaded on the chip without any further sample cleanup or on-line adsorption preconcentration. Accurate molecular mass determination (< 5 ppm) in peptide-mapping experiments was obtained by introducing an internal standard via a postseparation channel. The analytical potential of this integrated device for the identification of trace-level proteins from different strains of H. influenzae is demonstrated using both peptide mass-fingerprint database searching and on-line tandem mass spectrometry.  相似文献   

10.
A method for speciation and identification of organoselenium metabolites found in human urine samples using high performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and tandem mass spectrometry (MS/MS) is described. Reversed-phase chromatographic separation was used for sample fractionation with the ICP-MS functioning as an element-selective detector, and six distinct selenium-containing species were detected in a human urine sample. Fractions were then collected and analyzed using a triple quadrupole mass spectrometer with electrospray ionization and collision-induced dissociation to obtain structural information. The first two fractions were identified specifically as selenomethionine and selenocystamine, estimated to be present at approximately 11 and 40 ppb, respectively. To the best of our knowledge, this is the first time these two metabolites have been positively identified in human urine.  相似文献   

11.
W Tong  A Link  J K Eng  J R Yates 《Analytical chemistry》1999,71(13):2270-2278
A method to directly identify proteins in complex mixtures by solid-phase microextraction (micro-SPE)/multistep elution/capillary electrophoresis (CE)/tandem mass spectrometry (MS/MS) is described. A sheathless liquid-metal junction interface is used to interface CE and electrospray ionization MS/MS. A subfemtomole detection limit is achieved for protein identification through database searching using MS/MS data. The SPE serves as a semiseparation dimension using an organic-phase step-elution gradient in combination with the second separation dimension for increased resolving power of complex peptide mixtures. This approach improves the concentration detection limit for CE and allows more proteins in complex mixtures to be identified. A 75-protein complex from yeast ribosome is analyzed using this method and 80-90% of the proteins in the complex can be identified by searching the database using the MS/MS data from a complete analysis. This multidimensional CE/MS/MS methodology provides an alternative to multidimensional liquid chromatography/MS/MS for direct identification of small amounts of protein in mixtures.  相似文献   

12.
Chang SY  Yeung ES 《Analytical chemistry》1997,69(13):2251-2257
Mass spectrometry (MS) is usually coupled on-line with capillary electrophoresis (CE) to analyze biomolecules by using electrospray ionization or continuous-flow fast-atom bombardment. We present a new design for laser vaporization/ionization time-of-flight mass spectrometry. CE, with its low flow rate (<1 μL/min), is highly compatible with MS, even if the total column effluent is introduced directly. A UV laser is used to vaporize and ionize the solution eluting from the column. There is no need to have a makeup solvent. Using this system, we have analyzed a group of amines and peptides. The concentration detection limit of serotonin is in the 10(-)(7) M level. The separation and identification of an amine mixture by CE/MS demonstrates the complementary nature of the information.  相似文献   

13.
A capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) interface, based on an electric circuit across a microdialysis membrane surrounding a short capillary segment closely connected to the separation capillary terminus, is demonstrated to be sensitive, efficient, and rugged. A microspray type ionization emitter produces a stable electrospray at the low flow rates provided by CE and thus avoids both the need for a makeup liquid flow provided by liquid junction or sheath flow interfaces and the subsequent dilution and reduction in sensitivity. Reproducibility studies and comparisons with CE/UV and the CE/sheath flow interface with ESI-MS are presented. Additionally, postrun acidification via the microdialysis junction interface is demonstrated and shown to be capable of denaturing the holomyoglobin protein noncovalent complex while maintaining separation efficiency.  相似文献   

14.
We describe a method, based on pressure-assisted capillary electrophoresis coupled to electrospray ionization mass spectrometry (PACE/ESI-MS), that allows the simultaneous and quantitative analysis of multivalent anions, such as citrate isomers, nucleotides, nicotinamide-adenine dinucleotides, and flavin adenine dinucleotide, and coenzyme A (CoA) compounds. Key to the analysis was using a noncharged polymer, poly(dimethylsiloxane), coated to the inner surface of the capillary to prevent anionic species from adsorbing onto the capillary wall. It was also necessary to drive a constant liquid flow toward the MS by applying air pressure to the inlet capillary during electrophoresis to maintain a conductive liquid junction between the capillary and the electrospray needle. Although theoretical plates were inferior to those obtained by CE/ESI-MS using a cationic polymer-coated capillary, the PACE/ESI-MS method improved reproducibility and sensitivity of these anions. Eighteen anions were separated by PACE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. The relative standard deviations (n = 6) of the method were better than 0.6% for migration times and between 1.4% and 6.2% for peak areas. The detection limits for these species were between 0.4 and 3.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL), that is, mass detection limits calculated in the range from 12 to 110 fmol at a signal-to-noise ratio of 3. The utility of the method was demonstrated by analysis of citrate isomers, nucleotides, dinucleotides, and CoA compounds extracted from Bacillus subtilis cells.  相似文献   

15.
The goal of characterization of the proteome, while challenging in itself, is further complicated by the microheterogeneity introduced by posttranslational modifications such as glycosylation. A combination of liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry (MS) offers the advantages of unique selectivity and high efficiency of the separation methods combined with the mass specificity and sensitivity of MS. In the current work, the combination of liquid-phase separations and mass spectrometry is demonstrated through the on-line coupling of electrospray ionization mass spectrometry (ESI-MS) and off-line coupling with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). LC/ESI-MS yields real-time results while maintaining the separation obtained from the LC analysis. CE/MALDI TOF-MS offers high-mass detection and extremely low detection limits. The unique separation selectivity of CE relative to reversed-phase HPLC separations of the members of a glycopeptide family was used to develop an integrated multidimensional analysis achieved by the off-line coupling of LC, CE, and MALDI TOF-MS. To demonstrate the applicability of these techniques to the characterization of the heterogeneity of posttranslational modifications present in glycoproteins, we will report on the study of the glycoforms present in a N-linked site in a single-chain plasminogen activator (DSPAα1).  相似文献   

16.
Although several designs have been advanced for coupling sample enrichment devices to a sheathless electrospray ionization-mass spectrometry (MS) interface on a capillary electrophoresis (CE) column, most of these approaches suffer from difficulties in fabrication, and the CE separation efficiency is degraded as a result of the presence of coupling sleeves. We have developed a design that offers significant improvements in terms of ease of fabrication, durability, and maintenance of the integrity of the CE-separated analyte zones. Capillaries with different inside and outside diameters were evaluated to optimize the performance of the CE-MS system, resulting in a mass limit of detection of 500 amol for tandem MS analysis of a standard peptide using a 20-microm-i.d. capillary. The improved design incorporates an efficient method to preconcentrate a sample directly within the CE capillary followed by its electrophoretic separation and detection using a true zero dead-volume sheathless CE-MS interface. Testing of this novel CE-MS system showed its ability to characterize proteomic samples such as protein digests, in-gel-digested proteins, and hydrophobic peptides as well as to quantitate ICAT-labeled peptides.  相似文献   

17.
Capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) was applied to the analysis of underivatized amino acids and the separation of their D/L-enantiomers. Under full-scan mode, all standard protein amino acids were separated and detected at low-femtomole levels using a 130-cm-long, 20-microm-i.d., 150-microm-o.d. underivatized fused-silica capillary with 1 M formic acid as the background electrolyte. The CE/ESI-MS technique was also applied to the separation of L-arginine from L-canavanine (a close analogue of arginine where the terminal methylene linked to the guanidine group of arginine is replaced by an oxygen atom) in a complex mixture containing all standard protein amino acids. The utility of CE/ESI-MS in the analysis of real-world samples was demonstrated by the identification of two metabolic diseases (PKU and tyrosinemia) through blood analysis with minimal sample preparation. In addition, the on-line separation of 11 underivatized L-amino acids from their D-enantiomers was achieved by using a 30 mM solution of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as the background electrolyte.  相似文献   

18.
A novel and practical technique for performing both parent and neutral loss (P&NL) monitoring experiments on a quadrupole ion trap mass spectrometer is presented. This technique is capable of performing scans analogous to the parent and neutral loss scans routinely applied on tandem-in-space instruments and allows for the screening of a sample to detect analytes of a specific compound class on a chromatographic time-scale. Acylcarnitines were chosen as the model compound class to demonstrate the analytical utility of P&NL monitoring because of their amenability to electrospray ionization (ESI), their unique and informative MS/MS fragmentation pattern, and their importance in biological functions. The [M + H]+ ions of all acylcarnitines dissociate to produce neutral losses of 59 and 161 amu and common product ions at m/z 60, 85, and 144. Both the neutral loss monitoring of 59 amu and the parent ion monitoring of m/z 85 are shown to be capable of identifying acylcarnitine [M + H]+ ions in a synthetic mixture and spiked pig plasma. The neutral loss monitoring of 59 amu is successful in detecting acylcarnitines in an unspiked pig plasma sample.  相似文献   

19.
The separation of the glycoforms of erythropoietin (EPO) by capillary electrophoresis (CE) was recently published as a monograph by the European Pharmacopoeia (European Pharmacopoeia 4 2002, 1316, 1123-1128). Although the experimental CE conditions employed a background electrolyte containing additives suitable for on-line UV-absorption detection, they were not appropriate for on-line mass spectrometry (MS) detection. In this work, an attempt was made to investigate experimental conditions employing volatile electrolyte systems to achieve the separation and characterization of EPO glycoforms using CE and ESI-MS methodologies. The influence of several operating conditions, such as the coating of the internal walls of the capillary as well as the composition, concentration, and the pH of the separation buffer were investigated. The results demonstrated that when the internal walls of the capillaries were permanently coated with Polybrene and a buffer electrolyte containing 400 mM of HAc-NH4Ac (acetic acid-ammonium acetate), pH 4.75, was used, a significantly reproducible separation was achieved for EPO glycoforms. Intact EPO was characterized by two mass spectrometry techniques: electrospray ionization (ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS). The data demonstrated that MALDI-TOF-MS provided a good approximation to an average molecular mass of the EPO molecule. However, it was still necessary to carry out further separation of the intact EPO glycoforms in order to obtain molecular mass information when ESI-MS was used.  相似文献   

20.
X Jin  J Kim  S Parus  D M Lubman  R Zand 《Analytical chemistry》1999,71(16):3591-3597
The development of a system capable of the speed required for on-line capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) of tryptic digests is described. The ion trap storage/reflectron time-of-flight (IT/reTOF) mass spectrometer is used as a nonscanning detector for rapid CE separation, where the peptides are ionized on-line using electrospray ionization (ESI). The ESI produced ions are stored in the ion trap and dc pulse injected into the reTOF-MS at a rate sufficient to maintain the separation achieved by CE. Using methodology generated by software and hardware developed in our lab, we can produce SWIFT (Stored Waveform Inverse Fourier Transform) ion isolation and TICKLE activation/fragmentation voltage waveforms to generate MS/MS at a rate as high as 10 Hz so that the MS/MS spectra can be optimized on even a 1-2 s eluting peak. In CE separations performed on tryptic digests of dogfish myelin basic protein (MBP) where eluting peaks 4-8 s wide are observed, it is demonstrated that an acquisition rate of 4 Hz provides > 20 spectra/peak and is more than sufficient to provide optimized MS/MS spectra of each of the eluting peaks in the electropherogram. The detailed structural analysis of dogfish MBP including several posttranslational modifications using CE-MS and CE-MS/MS is demonstrated using this method with < 10 fmol of material consumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号