首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the transformation of six industrial azo and phthalocyanine dyes by ligninolytic peroxidases from Bjerkandera adusta and other white rot fungi. The dyes were not oxidized or were oxidized very little by Phanerochaete chrysosporium manganese peroxidase (MnP) or by a chemically generated Mn3+-lactate complex. Lignin peroxidase (LiP) from B. adusta also showed low activity with most of the dyes, but the specific activities increased 8- to 100-fold when veratryl alcohol was included in the reaction mixture, reaching levels of 3.9 to 9.6 U/mg. The B. adusta and Pleurotus eryngii MnP isoenzymes are unusual because of their ability to oxidize aromatic compounds like 2,6-dimethoxyphenol and veratryl alcohol in the absence of Mn2+. These MnP isoenzymes also decolorized the azo dyes and the phthalocyanine complexes in an Mn2+-independent manner. The reactions with the dyes were characterized by apparent Km values ranging from 4 to 16 microM and specific activities ranging from 3.2 to 10.9 U/mg. Dye oxidation by these peroxidases was not increased by adding veratryl alcohol as it was in LiP reactions. Moreover, the reaction was inhibited by the presence of Mn2+, which in the case of Reactive Black 5, an azo dye which is not oxidized by the Mn3+-lactate complex, was found to act as a noncompetitive inhibitor of dye oxidation by B. adusta MnP1.  相似文献   

2.
Oxidation capacities of laccase, manganese peroxidase (MnP) and lignin peroxidase (LiP) from Phlebia radiata were compared using non-phenolic (veratryl alcohol and ABTS) and phenolic (syringaldazine, vanillalacetone and Phenol red) compounds as reducing substrates. The effect of Mn(II) on enzyme reactions was also studied. Highest specific activities were recorded with laccase in the oxidation of phenolic compounds or ABTS and irrespective of Mn(II) concentration. LiP and MnP oxidized all these substrates but only the catalysis of MnP was dependent upon Mn(II). Only LiP clearly oxidized veratryl alcohol. However, Mn(II) interfered with this reaction by repressing veratraldehyde formation. These results point to multiple participation of manganese ions, either as a reducing (Mn(II)) or oxidizing (Mn(III)) agent in the enzymatic reactions.  相似文献   

3.
The 1H NMR spectroscopy was used to study lignin peroxidase (LiP) and manganese peroxidase (MnP) containing deuterated histidines. LiP and MnP were obtained from a histidine auxotroph of the fungus Phanerochaete chrysosporium grown in the presence of deuterated histidines. The derivatives with deuterated histidines have allowed a firm assignment of the protons of the distal and proximal histidines. We have also found that the LiP from this strain exhibits different orientations of the 2-vinyl group compared to the LiP from the strain previously studied. Mobility of the group has also been detected, thus explaining the apparent inconsistency between X-ray solid-state and NMR solution data. The 15N shift values of 15N-enriched CN- in the cyanide derivatives of LiP and MnP have also been measured. The shift patterns, both for 15N and for the proximal histidine protons of several peroxidases, are consistent with predominant contact shift contributions which reflect the bond strength of the metal-axial ligand. Finally, our results confirm a correlation between shift values of 15N and those of proximal histidine protons and the Fe3+/Fe2+ redox potentials.  相似文献   

4.
Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis.  相似文献   

5.
6.
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58-60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (C alpha-distance 1.2 A). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP.  相似文献   

7.
In the high-resolution crystal structures of two lignin peroxidase isozymes from the white rot fungus Phanerochaete chrysosporium a significant electron density at single bond distance from the C beta of Trp171 was observed and interpreted as a hydroxy group. To further clarify the nature of this feature, we carried out tryptic digestion of the enzyme and isolated the Trp171 containing peptide. Under ambient conditions, this peptide shows an absorbance spectrum typical of tryptophan. At elevated temperature, however, the formation of an unusual absorbance spectrum with lambda max = 333 nm can be followed that is identical to that of N-acetyl-alpha, beta-didehydrotryptophanamide, resulting upon water elimination from beta-hydroxy tryptophan. The Trp171 containing tryptic peptide isolated from the recombinant and refolded lignin peroxidase produced from Escherichia coli does not contain the characteristic 333 nm absorbance band at any temperature. However, treatment with 3 equiv of H2O2 leads to complete hydroxylation of Trp171. Reducing substrates compete with this process, e.g., in the presence of 0.5 mM veratryl alcohol, about 7 equiv of H2O2 is necessary for complete modification. We conclude that the hydroxylation at the C beta of Trp171 is an autocatalytic reaction which occurs readily under conditions of natural turnover, e.g., in the ligninolytic cultures of P. chrysosporium, which are known to contain an oxidase-based H2O2-generating system. No dependence on dioxygen was found for this oxidative process. Chemical modification of fungal lignin peroxidase with the tryptophan-specific agent N-bromo succinimide leads to a drastically reduced activity with respect to the substrate veratryl alcohol. This suggests that Trp171 is involved in catalysis and that electron transfer from this surface residue to the oxidized heme cofactor is possible under steady-state conditions.  相似文献   

8.
The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously shown for several other white rot species. Low levels of laccase were also detected. No lignin peroxidase (LiP) was found in the culture medium, either by spectrophotometric assay or by Western blotting (immunoblotting). Despite the apparent reliance of the strain primarily on MnP, liquid cultures of P. laevis were capable of extensive transformation of anthracene, phenanthrene, benz[a]anthracene, and benzo[a]pyrene. Crude extracellular peroxidases from P. laevis transformed all of the above PAHs, either in MnP-Mn2+ reactions or in MnP-based lipid peroxidation systems. In contrast to previously published studies with Phanerochaete chrysosporium, metabolism of each of the four PAHs yielded predominantly polar products, with no significant accumulation of quinones. Further studies with benz[a]anthracene and its 7,12-dione indicated that only small amounts of quinone products were ever present in P. laevis cultures and that quinone intermediates of PAH metabolism were degraded faster and more extensively by P. laevis than by P. chrysosporium.  相似文献   

9.
Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4'-dichlorobiphenyl, 2,4',5-trichlorobiphenyl (2,4',5-TCB), 2,2',4,4'-tetrachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl. The congener tested for mineralization was 2,4',5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains of Bjerkandera adusta (UAMH 8258 and UAMH 7308), one strain of Pleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower, 相似文献   

10.
Peroxidases are heme proteins which are able to catalyze the oxidation of a large variety of substrates through the reaction with hydrogen peroxide. The specific biological function, the reduction potential of the iron and the nature of the substrates which can be oxidized, are strongly determined by the structural features of the protein matrix around the prosthetic group. In particular, two main features are considered to be responsible of the specificity of the biological function: the strong anionic character of the fifth, proximal ligand to the iron, which is able to stabilize high oxidation states, and the hydrophilic nature of the residues in the distal pocket. Beside the correct reduction potential for the oxidation reaction, the specificity towards different substrates also depends on the protein structural arrangement which can determine specific binding sites for substrates and mediators. Particularly, in the case of MnP,the Mn2+ binding site has been individuated in the X-ray structure. NMR studies were previously reported which provided an iron-manganese distance consistent with that from the X-ray structure. This information can help in defining the possible pathway for the electron transfer from the Mn2+ ion to the iron. On the contrary, in the case of LiP no information is available on the possible binding site of veratryl alcohol as well as of other aromatic substrates. This article reviews these structural properties of peroxidases with particular emphasis to their implications in the catalytic process. Finally, the calcium ions have been located in the structure of LiP and the MnP: their structural relevance will be discussed on the light of the possible role in determining the optimal arrangement of residues in the distal cavity for the enzymatic reaction.  相似文献   

11.
Site-directed mutagenesis was used to identify the veratryl alcohol binding site of lignin peroxidase. The cDNA encoding isozyme H8 was mutated at Glu146 to both an Ala and a Ser residue. The H8 polypeptide was produced by E. coli as inclusion bodies and refolded to yield active enzyme. The wild type recombinant enzyme and the mutants were purified to homogeneity and characterized by steady state kinetics. The kcat is decreased for both mutants of Glu146. The reactivity of mutants (kcat/Km) toward H2O2 were not affected. In contrast, the kcat/Km of the mutants for veratryl alcohol were decreased by at least half. The oxidation of guaiacol by these mutants were more significantly affected. These results collectively suggest that E146 plays a central role in the binding of veratryl alcohol by lignin peroxidase.  相似文献   

12.
The mechanism of veratryl alcohol-mediated oxidation of 4-methoxymandelic acid by lignin peroxidase was studied by kinetic methods. For monomethoxylated substrates not directly oxidized by lignin peroxidase, veratryl alcohol has been proposed to act as a redox mediator. Our previous study showed that stimulation of anisyl alcohol oxidation by veratryl alcohol was not due to mediation but rather due to the requirement of veratryl alcohol to complete the catalytic cycle. Anisyl alcohol can react with compound I but not with compound II. In contrast, veratryl alcohol readily reduces compound II. We demonstrate in the present report that the oxidation of 4-methoxy mandelic acid is mediated by veratryl alcohol. Increasing veratryl alcohol concentration in the presence of 2 mM 4-methoxymandelic acid resulted in increased oxidation of 4-methoxymandelic acid yielding anisaldehyde. This is in contrast to results obtained with anisyl alcohol where increased concentrations of veratryl alcohol caused a decrease in product formation. ESR spectroscopy demonstrated that 4-methoxymandelic acid caused a decrease in the enzyme-bound veratryl alcohol cation radical signal, which is consistent with its reaction at the active site of the enzyme.  相似文献   

13.
A nylon-degrading enzyme found in the extracellular medium of a ligninolytic culture of the white rot fungus strain IZU-154 was purified by ion-exchange chromatography, gel filtration chromatography, and hydrophobic chromatography. The characteristics of the purified protein (i.e., molecular weight, absorption spectrum, and requirements for 2,6-dimethoxyphenol oxidation) were identical to those of manganese peroxidase, which was previously characterized as a key enzyme in the ligninolytic systems of many white rot fungi, and this result led us to conclude that nylon degradation is catalyzed by manganese peroxidase. However, the reaction mechanism for nylon degradation differed significantly from the reaction mechanism reported for manganese peroxidase. The nylon-degrading activity did not depend on exogenous H2O2 but nevertheless was inhibited by catalase, and superoxide dismutase inhibited the nylon-degrading activity strongly. These features are identical to those of the peroxidase-oxidase reaction catalyzed by horseradish peroxidase. In addition, alpha-hydroxy acids which are known to accelerate the manganese peroxidase reaction inhibited the nylon-degrading activity strongly. Degradation of nylon-6 fiber was also investigated. Drastic and regular erosion in the nylon surface was observed, suggesting that nylon is degraded to soluble oligomers and that nylon is degraded selectively.  相似文献   

14.
The stability of Mn(II) binding to manganese peroxidase (MnP) has been studied as a function of pH by spectrophotometric and potentiometric titrations. The sensitivity of the potentiometric titrations allows collection of data that are consistent with a high-affinity and a low-affinity Mn(II) binding site on the peroxidase. The two sites differ in affinity by 4 to 900-fold between pH 4 and 6.5. The stability of Mn(II) binding to the high-affinity site increases with increasing pH, while the stability of Mn(II) binding to the low-affinity site decreases with increasing pH. Interestingly, at pH values above 5.0, the high-affinity site appears to be partially unavailable for binding Mn(II). A pH-dependent structural change in the Mn(II) binding site is proposed to account for this partial inactivation at elevated pH.  相似文献   

15.
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25 degrees C, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 mumol NADH min-1 mg-1 protein, respectively, compared to 0.067 and 0.060 mumol NADH min-1 mg-1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a K(m) for methylglyoxal of 8.6 microM, the lowest compared to 46 microM for E1 and 586 and 552 microM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 microM for E1 and E2 isozymes, respectively.  相似文献   

16.
DNA damage checkpoints update: getting molecular   总被引:2,自引:0,他引:2  
A cDNA (MnP13-1) and the Cs-mnp1 gene encoding for an isoenzyme of manganese peroxidase (MnP) from C. subvermispora were isolated separately and sequenced. The cDNA, identified in a library constructed in the vector Lambda ZIPLOX, contains 1285 nucleotides, excluding the poly(A) tail, and has a 63% G+C content. The deduced protein sequence shows a high degree of identity with MnPs from other fungi. The mature protein contains 364 amino acids, which are preceded by a 24-amino-acid leader sequence. Consistent with the peroxidase mechanism of MnP, the proximal histidine, the distal histidine and the distal arginine are conserved, although the aromatic binding site (L/V/I-P-X-P) is less hydrophilic than those of other peroxidases. A gene coding for the same protein (Cs-mnp1) was isolated from a genomic library constructed in Lambda GEM-11 vector using the cDNA MnP13-1 as a probe. A subcloned SacI fragment of 2.5kb contained the complete sequence of the Cs-mnp1 gene, including 162bp and 770bp of the upstream and downstream regions, respectively. The Cs-mnp1 gene possesses seven short intervening sequences. The intron splice junction sequences as well as the putative internal lariat formation sites adhere to the GT-AG and CTRAY rules, respectively. To examine the structure of the regulatory region of the Cs-mnp1 gene further, a fragment of 1.9kb was amplified using inverse PCR. A putative TATAA element was identified 5' of the translational start codon. Also, an inverted CCAAT element, SP-1 and AP-2 sites and several putative heat-shock and metal response elements were identified.  相似文献   

17.
The design of a series of functionally active models for manganese peroxidase (MnP) is described. Artificial metal binding sites were created near the heme of cytochrome c peroxidase (CCP) such that one of the heme propionates could serve as a metal ligand. At least two of these designs, MP6.1 and MP6.8, bind Mn2+ with Kd congruent with 0.2 mM, react with H2O2 to form stable ferryl heme species, and catalyze the steady-state oxidation of Mn2+ at enhanced rates relative to WT CCP. The kinetic parameters for this activity vary considerably in the presence of various dicarboxylic acid chelators, suggesting that the similar features displayed by native MnP are largely intrinsic to the manganese oxidation reaction rather than due to a specific interaction between the chelator and enzyme. Analysis of pre-steady-state data shows that electron transfer from Mn2+ to both the Trp-191 radical and the ferryl heme center of compound ES is enhanced by the metal site mutations, with transfer to the ferryl center showing the greatest stimulation. These properties are perplexingly similar to those reported for an alternate model for this site (1), despite rather distinct features of the two designs. Finally, we have determined the crystal structure at 1.9 A of one of our designs, MP6.8, in the presence of MnSO4. A weakly occupied metal at the designed site appears to coordinate two of the proposed ligands, Asp-45 and the heme 7-propionate. Paramagnetic nuclear magnetic resonance spectra also suggest that Mn2+ is interacting with the heme 7-propionate in MP6.8. The structure provides a basis for understanding the similar results of Yeung et al. (1), and suggests improvements for future designs.  相似文献   

18.
It has been shown recently that Trp171 of lignin peroxidase (LiP) is hydroxylated at the Cbeta position [Blodig, W., Doyle, W. A., Smith, A. T., Winterhalter, K., Choinowski, T., and Piontek, K. (1998) Biochemistry 37, 8832-8838]. Comparative experiments, carried out on both wild-type fungal and recombinant LiP isoenzyme H8 (LiPH8), indicate that the process of hydroxylation is autocatalytic and that Trp171 may be implicated in catalysis. The role of this residue has therefore been examined using site-directed mutagenesis to obtain recombinant enzymes with Trp171 substituted by Phe or Ser (W171F and W171S LiPH8, respectively). The wild-type recombinant enzyme (LiPH8) was analyzed in solution using 1H NMR spectroscopy and its integrity confirmed prior to the kinetic and spectroscopic characterization of LiPH8 mutants. A charge neutralization mutation in the "classical heme edge" substrate access channel of LiP, in which Glu146 was substituted by Gly (E146G LiPH8), showed substantial activity with respect to veratryl alcohol (VA) oxidation and a marked (2.4 pH units) increase in pKa for the oxidation of a negatively charged difluoroazo dye. More surprisingly, the Trp171 LiPH8 mutants W171F and W171S LiPH8 were found to have lost all activity with VA as substrate, and compounds I and II were unable to react with VA. Both mutants, however, retained substantial activity with two dye substrates. These data provide the first direct evidence for the existence of two distinct substrate interaction sites in LiP, a heme-edge site typical of those encountered in other peroxidases and a second, novel site centered around Trp171 which is required for the oxidation of VA. Stopped-flow kinetic studies showed that all the mutants examined reacted normally with hydrogen peroxide to give a porphyrin cation radical (compound I). However, the rapid phase of spontaneous compound I reduction (2.3 s-1), typical of wild-type LiP, was absent in the Trp171 mutants, strongly suggesting that an electron-transfer pathway must exist within the protein leading from the heme to a surface site in close proximity to Trp171. The kinetic competence of such a pathway is dependent on interaction of the enzyme with VA, at or near Trp171.  相似文献   

19.
The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration.  相似文献   

20.
Two isozymes of beta-N-acetylglucosaminidase (2-acetamido-2-deoxy-beta-D-glucoside acetamidodeoxy glucohydrolase, EC 3.2.1.30) (A and B) from bull seminal plasma were purified to homogeneity by isoelectric focusing having pI values of 5.31 and 6.78. The two proteins were glycoproteins with very similar amino acid composition but isozyme A contained more sialic acid than isozyme B. The molecular weights of isozyme A and B were estimated at 200 000 and 190 000 by gel filtration. Two identical subunits corresponding to molecular weights of 53 000 and 13 400 were obtained from hexosaminidase A and B when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Similar results were obtained when dissociation of the isozymes was effected with mercaptoethanol, guanidine hydrochloride and urea in presence of sodium dodecyl sulphate and the subunits separated by acrylamide gel electrophoresis. The two isozymes were more stable in frozen conditions than at the refrigerated temperature. Of the divalent ion tested, glucosaminidase and galactosaminidase activities of isozymes A and B were strongly inhibited by Hg2+ and Ag+ thus suggesting the presence of thiol groups in the two proteins. The two isozymes were active on natural substrates; isozyme B being more active than isozyme A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号