首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flow over Gabion Weirs   总被引:1,自引:0,他引:1  
A conventional weir typically consists of an impermeable body constructed of concrete, since its primary functions are to heading up water and efficiently regulate flow. However, an impermeable body prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on the water environment. One of the advantages of gabions as a building material is that the motion of individual stones comprising the gabion is not of much concern. The wire mesh of the gabion basket serves to restrain any significant movement. Also, gabion weirs offer an alternative design that could be adopted for flash flood mitigation. In this study, a series of laboratory experiments was performed in order to investigate the flow over gabion weirs. For this purpose, two different gabion weir models were tested in two horizontal laboratory flumes of 10-m and 17-m length, 0.3-m width, and 0.3- and 0.5-m depth, respectively, for a wide range of discharge, upstream water depth, downstream water depth, weir height, weir length, and gabion filling gravel material size. The results of the gabion weir were compared with those of experiments carried out on solid weirs having the same dimension and it was found that there is a large deviation when the solid weirs equation is applied to gabion weirs (permeable weirs). So, using one of the existing solid weir flow formulas would lead to an erroneous calculated value. Multiple regression equations based on the dimensional analysis theory were developed for computing the discharge over gabion weirs for both free and submerged flow regimes. Also, equations were introduced for computing the discharge coefficient to be applied with the traditional solid weir equation.  相似文献   

2.
An iterative step method for solving the nonlinear ordinary differential equation, governing spatially varied flows with decreasing discharge, like the flow over side weirs, is developed. In the procedure, starting at a known flow depth and discharge in the control section, the analytical integration of the dynamic equation with bed and friction slope is carried out. The specific energy, the weir coefficient and the velocity distribution coefficient are considered as local variables, then for the explicit integration, the respective average values along the short side weir elements are assumed. The water surface profiles and the discharges for flow over side weirs, obtained with the proposed relation and valid for rectangular channels, are compared with experimental data for subcritical and supercritical flow conditions. The validation of the method is accomplished by the comparison with the solution obtained by De Marchi’s classical hypothesis, about the specific energy, which is constant along a side weir. In addition, the influence of the coefficient velocity distribution is considered.  相似文献   

3.
Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs   总被引:3,自引:0,他引:3  
Streambank erosion is an important management issue, particularly for meandering rivers. Recently, bendway weirs have become popular control measures for bank erosion along small meandering streams in the agricultural Midwest. Although these structures have successfully mitigated bank erosion in some cases, there is evidence that the weirs do not always perform as anticipated. Scientific understanding of how bendway weirs influence flow dynamics, streambank erosion, and aquatic habitat is limited. Current design criteria are based primarily on expert judgment rather than a formalized technical design procedure. At field-scale studies, the present paper represents a first step toward an integrated geomorphological and engineering evaluation of the performance of bendway weirs in rivers. To accomplish this initial phase, three-dimensional (3D) velocity data were collected on Sugar Creek at Brookside Farm, Ill., and 3D numerical simulations for low-flow conditions were performed to validate the computational fluid dynamic model. Overall results show good agreement between measured and simulated data for streamwise velocities and turbulence kinetic energy. The model is less accurate at predicting the velocity and turbulence kinetic energy in the shear layer immediately downstream from the weir tips. Based on the validation for low-flow condition, 3D simulations were carried out for medium and high flows where the bendway weirs are completely submerged. These simulations indicate that 3D patterns of flow, especially flow near the outer bank, change dramatically with changes in flow stage. Flow patterns at high-flow condition indicate that bank retreat over the tops of weirs is associated with locally high-shear stresses, thus producing a “shelf” along the base of the outer bank as observed in the field.  相似文献   

4.
A series of laboratory experiments was performed in order to investigate the effects of width of the lower weir crest and step height of broad-crested weirs of rectangular compound cross section on the values of the discharge coefficient, the approach velocity coefficient, and the modular limit. For this purpose, nine different broad-crested weir models with rectangular compound cross sections and a model with a rectangular cross section were tested in a horizontal laboratory flume of 11.0 m length, 0.29 m width, and 0.70 m depth for a wide range of discharges. The compound cross sections were formed by a combination of three sets of step heights and three sets of lower weir crest widths. The sill-referenced heads at the approach channel and at the tailwater channel were measured in each experiment. The dependence of the discharge coefficient, approach velocity coefficient, and modular limit values on model parameters was investigated, and these quantities were compared with those of the broad-crested weir models with a rectangular cross section.  相似文献   

5.
Hydraulics of Broad-Crested Weirs with Varying Side Slopes   总被引:1,自引:0,他引:1  
The flow of water over a trapezoidal, broad-crested, or embankment weir with varying upstream and downstream slopes has been investigated. Data are presented comparing the effect of slopes of 2H:1V, 1H:1V and vertical in various combinations on the upstream and downstream faces of the weir. Pressure and surface profiles were self-similar for all cases tested. Increasing the upstream slope to the vertical decreased the height of the surface profile and, hence, the static pressure of the crest. It also reduced the discharge coefficient. The variation in downstream static pressures was negligible though. Varying the downstream slope had a negligible effect on the surface and pressure profiles over the weir. Changes in flow were constrained to the region downstream of the crest. Cavitation could occur at the downstream corner of the weir if the upstream head was sufficiently high and a sloped face was used. This paper presents data that will be of use in the design of hydraulic structures for flow control and measurement.  相似文献   

6.
A numerical approach is considered for flow over side weirs as a substantial part of distribution channels in irrigation systems and treatment units. The model is based on the energy principle and a curve-fitting technique. For this purpose, the side weir was divided into elementary strips to develop generalized equations for discharge and surface profile. The change in water surface elevation towards the weir crest and the inclination of the deflected flow over the weir were also taken into account. Dimensionless parameters were used and the normalized equations solved to obtain the hydraulic parameters of side weirs. The results were plotted to determine general relationships based on the curve-fitting technique. A practical application of the derived equations to obtain hydraulic parameters of side weirs is performed using literature data.  相似文献   

7.
It has been observed that submerged weirs in bendways realign the flow and in general improve navigation conditions. This qualitative observation has been the basis for field design. This paper presents a study of hydrodynamics in the Victoria Bendway in the Mississippi River using three-dimensional numerical simulations. A numerical model, CCHE3D, was applied and computational results were compared to three-dimensional velocity data provided by the U.S. Army Corps of Engineers with reasonable agreement. The numerical simulation results were then used to analyze helical currents due to the channel curvature and the presence of submerged weirs. The simulated flow realignment near the free surface indicates that the flow conditions in the bendway were improved by the submerged weirs, however, the effectiveness of each weir depends on its alignment, local channel morphology, and flow conditions.  相似文献   

8.
The slit weir has been recently shown to be effective in measuring very small discharge rates. In this study, the slit weir concept is extended to permit one to measure both very low and very high discharge rates accurately. For this purpose, the hydrodynamic concept of images is adopted to form a bank of multislit weirs in which the individual slit weirs have nearly identical flow characteristics. The discharge coefficient of multislit weirs is determined experimentally using the measured discharges and the corresponding heads causing weir flow. The relationship between the discharge coefficient and the main dimensionless parameters is investigated. It is concluded that the discharge coefficient can be represented solely as a function of the Reynolds number.  相似文献   

9.
The critical flow principle is a useful approach for the hydraulic analysis of round-crested weirs due to their single head-discharge relationships. The hydraulics of circular-crested weirs is examined using simplified models incorporating streamline curvature effects, comparing their predictions with experimental data. A generalized one-dimensional model based on the critical flow in curvilinear motion has been developed. The discharge coefficient increases with the specific energy normalized with the radius of curvature, E/R, when streamline curvature effects are included. The relative flow depth at the crest decreases as E/R increases. The flow at the weir crest is only critical for a normalized specific energy value of E/R ≈ 0.5–0.6. For larger heads, the flow at the weir crest has been found to be supercritical.  相似文献   

10.
Discharge Capacity of Labyrinth Side Weir Located on a Straight Channel   总被引:3,自引:0,他引:3  
Side weirs, also known as lateral weirs, are flow diversion devices widely used in irrigation as a head regulator of distributaries and escapes, land drainage, and urban sewage systems. The studies on the subject have been generally focused on rectangular and triangular side weirs located on a straight channel. However, the same is not true for labyrinth side weirs. The current studies deal with sediment transport and scour problems around side weirs and lateral structures. The investigation of the hydraulic effects of labyrinth side weirs to increase discharge capacity of them has been studied in this particular work. In the study, 2,830 laboratory tests were conducted for determining discharge coefficient of labyrinth side weirs, and results were analyzed to find the influence of the dimensionless weir length L/b, the dimensionless effective length L/?, the dimensionless weir height p/h1, triangular labyrinth side weir included angle θ, and upstream Froude number F1 on the discharge coefficient, water surface profile and velocities in the channel along the side weir. It has been found that discharge coefficient of labyrinth side weirs gives pretty higher coefficient value compare to that of classical side weirs and a reliable equation for discharge coefficient of labyrinth weirs is presented. Discharge coefficient of the labyrinth side weir is 1.5–4.5 times higher than rectangular side weir.  相似文献   

11.
Water Modeling of Optimizing Tundish Flow Field   总被引:2,自引:1,他引:2  
 In the water modeling experiments, three cases were considered, ie, a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.  相似文献   

12.
The effect of water surface slope in the lateral direction on flow over side weirs was studied. Water surface elevation on the weir plane was expressed by a parameter ψ based upon the hydraulic profile on the channel axis. Two different relationships of ψ as a function of the Froude number were used to calculate side weir discharges. Results were compared with the experimental data. It was shown that better results are obtained when transition conditions of ψ = 1 at the ends of the side weirs with no lateral surface slope are taken into account. However the effect of water surface slope in lateral direction is of secondary importance as compared to the angle of the deflected water jet along the side weir.  相似文献   

13.
This technical note presents a critical analysis flow over weirs of finite crest length, with square-edged or rounded entrance, for free-flow conditions. Using the flow equation for the broad-crested weir with parallel flow in the critical state as the basis, we have defined the discharge coefficient Cd, with the head on the weir as the length scale. Based on an extensive analysis of the experimental observations in the literature, we have confirmed the classification of finite crest length weirs into four classes of long-crested, broad-crested, short-crested, and sharp-crested weirs. For the square-edged entrance, we have developed robust correlations for Cd when the Weber number is greater than 1. For weirs with a rounded entrance, for which the data set is not that extensive compared to the square-edged case, we have developed good correlations for Cd.  相似文献   

14.
Aeration Performance of Rectangular Planform Labyrinth Weirs   总被引:1,自引:0,他引:1  
Maintenance of a high level of dissolved oxygen is important in natural rivers and in some water treatment processes. This can be enhanced by creating turbulence in the water. One method of producing such turbulence is via the overflow jets downstream of weir structures. The aeration characteristics of straight weirs have been measured and analyzed by a number of investigators. However, labyrinth weirs, which are cranked in planform, have received little attention in this respect. The aeration performance of a weir under a particular set of flow conditions is largely determined by the characteristics of the overall jet. The geometry of labyrinth weirs provides increased sill length and often results in the overfall jets colliding with each other, both of which may lead to increased aeration. A series of laboratory experiments were run on rectangular planform labyrinth weirs. These showed that, although detailed geometry of the weir was not important, the labyrinth weirs aerated significantly better than an equivalent straight weir, particularly at low drop heights.  相似文献   

15.
The sharp-crested weir is the most commonly used device in channels for flow measurement and flow regulation due to its simplicity. Attempts have been made to study in detail the flow over different shapes of normal conventional weirs, side weirs, and oblique weirs. Most of the investigators have expressed the discharge coefficient as a function of various parameters. The concern of this paper is to study flow over an inclined inverted triangular notch weir. Based on experimental work on 0° (normal) and 15, 30, 45, and 60° weirs, the writers have established an equation for discharge in terms of the inclination angle of the weir plane with the plane normal to the flow axis. A new general algebraic optimization procedure has been developed for evolving a linear head-discharge relationship for an inclined inverted V-notch (IIVN), which is relatively superior to similar procedures developed earlier. It has been shown that the IIVN does not lose its near-linear discharging characteristics even when it is inclined to the channel bed. The discharge estimated by the linear discharge-head relationship has been found to be in good agreement with the actual discharges well within a ±5% error. Further, the advantages of the IIVN as a flow measuring and flow control device have been highlighted.  相似文献   

16.
Hydraulic structures, such as stepped cascades and weirs, involve air entrainment (aeration) and oxygen transfer. Therefore, they can increase dissolved oxygen levels. Weir aeration occurs in rivers, fish hatcheries, and wastewater treatment plants. A stepped cascade aerator is another type of aeration structure. A stepped cascade consists of a series of steps or drops, built into the face of the chute. Often, the hydraulic head is naturally available and incurs no operating cost. For the preaeration process, weir and stepped cascade structures can be previously designed for clarifiers where weirs can be used as an aid to aeration process of treatment plants. Therefore, this paper aims to review the design considerations of circular clarifiers with combined weir and stepped cascade structures as a new approach and alternative preaeration system without energy requirement before aeration tank units. The detailed example for preaeration in circular clarifiers with combined weir and stepped cascade structures is presented. Thus, the circular clarifiers with weir and stepped cascade structures as effluent and preaeration strucures can be effectively redesigned with given new design considerations.  相似文献   

17.
基于有限元分析软件对中间包流场的数值模拟研究和优化结果表明,设置流动控制装置可明显改善钢水流动状况,有利于提高连铸坯质量。对比几种流动控制装置发现设置堰坝的效果更加明显,且堰坝间距750 mm、堰与注流口间距1350 mm时所得钢液净化效果最佳。  相似文献   

18.
The hydrodynamic pressure field is important for the design and safety of steeply sloping stepped spillways, which are typically designed for considerably lower maximum specific discharges than smooth spillways. The hydraulic performance of stepped spillways at high velocities may compromise its use due to major concern with safety against cavitation damage. Hydraulic model investigations were conducted in different large-size stepped chutes to characterize the nonaerated flow region which is potentially prone to cavitation damage and the pressure field acting on the step faces. The clear water depths and energy dissipation in the developing flow region are described in terms of integral measures of the turbulent boundary layer. Expressions for the location of and the flow depth at the inception point of air entrainment are derived. Pressure distributions on the horizontal and vertical faces of the step along the spillway are presented. Measurements indicated a different behavior of the pressure field in the aerated and nonaerated flow region. The mean and fluctuating pressure coefficients along the spillway are approximated by a regression function. The vertical face near the outer step edge close to the inception point of air entrainment is identified as a critical region for predicting cavitation inception in flow over stepped spillways. From the analysis of the pressure fluctuations in that region a maximum velocity of 15 m/s is proposed as a criterion to avoid extreme negative pressures in typical prototype steeply sloping stepped spillways, eventually leading to the occurrence of cavitation in the nonaerated flow.  相似文献   

19.
A large variety of hydraulic jumps on horizontal and sloping inverts at the end of an ogee standard weir is investigated. An ogee standard weir was used to create supercritical flow and slopes of 0.0, ?0.025, ?0.05, ?0.075, and ?0.10 were built downstream of the weir. Based on the momentum equation in the horizontal direction, a method to predict the sequent depth ratio is presented. The theory agrees well with the results of the writers and previous investigators. A correlation was developed to predict the minimum Froude number needed to establish jumps on negative slopes. Observations showed that in those cases where the gravity force component in the jump was opposite to the flow direction, the water surface of the surface roller became undular and unstable. The hydraulic jump on an entirely adverse slope was almost impossible to control. The analysis of experimental data showed that the negative slope of the basin reduces the sequent depth ratio, while a positive slope increases the sequent depth ratio.  相似文献   

20.
This paper describes a series of novel experiments testing the relative efficiencies in passing juvenile salmon (parr) through a range of model fish passes incorporating devices such as vertical slots, orifices, weirs, and combinations of all three. The hydraulic parameters—head loss, velocity patterns, and turbulence structure—were measured under each set of test conditions. A significantly higher proportion of fish moved through submerged orifices and vertical slots than through overflow weirs for any given flow rate, velocity, and head loss. The orifice and vertical slot efficiencies were directly correlated to the velocities at their entrances. To reach the tested devices, salmon parr tended to remain near the bottom of the flume and followed paths providing them with low velocities and cover along the sides of the test arena. The movements of salmon approaching entrances were consistent with energy-conserving strategies. The paper presents a tentative approach for computing energy expenditure for a range of fish pass devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号