首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topological and pressure-driven analyses are an integral part of reliability/risk considerations for a water distribution system. For example, it is often necessary to identify which parts of the distribution network are isolated from water sources after the valves have been closed in response to a mechanical pipe failure. Pressure-driven analysis is then necessary to ascertain the consequences of pipe failures in terms of the performance of the functioning subsystem while pipe breaks are being fixed in the isolated area. Therefore, it is extremely useful to have an algorithm for the automatic identification of nodes/pipes disconnected from the water source(s). However, this is a complex problem because valves sometimes significantly modify the network topology. Furthermore, the use of isolation valves can cause a demand shortage to some customers (due to pressure reduction) during the abnormal operating conditions in the system. Thus, pressure-driven simulation of the network behavior is required. For these reasons, a novel algorithm capable of automatic detection of topological network changes is coupled with a robust pressure-driven simulation model. This algorithm is tested on two case studies involving a small artificial water distribution system and a larger, real-life network. The results obtained clearly demonstrate the robustness of the algorithm developed.  相似文献   

2.
The challenge of water demand representation in water distribution systems is revisited with a brief exploration of the relationship between a pressure-dependent leak and a fixed legitimate demand. Specifically, the idea that a leak can be modeled as an increment to legitimate demand in such a way that it entails an equivalent impact on both water loss and energy consumption is explored. Conversely, the representation of demands as leaks is briefly considered. The effectiveness of pressure reduction and demand curtailment as leak management schemes are compared for a single pipe system. The influence of pipe resistance on this relationship is assessed, suggesting that such schemes are more important in rougher pipes. In general, the notion that leakage and demand analysis/management are two sides of the same coin, and that pressure/demand management is essentially conservation, is put forth.  相似文献   

3.
Demand Forecasting for Irrigation Water Distribution Systems   总被引:1,自引:0,他引:1  
One of the main problems in the management of large water supply and distribution systems is the forecasting of daily demand in order to schedule pumping effort and minimize costs. This paper examines methodologies for consumer demand modeling and prediction in a real-time environment for an on-demand irrigation water distribution system. Approaches based on linear multiple regression, univariate time series models (exponential smoothing and ARIMA models), and computational neural networks (CNNs) are developed to predict the total daily volume demand. A set of templates is then applied to the daily demand to produce the diurnal demand profile. The models are established using actual data from an irrigation water distribution system in southern Spain. The input variables used in various CNN and multiple regression models are (1) water demands from previous days; (2) climatic data from previous days (maximum temperature, minimum temperature, average temperature, precipitation, relative humidity, wind speed, and sunshine duration); (3) crop data (surfaces and crop coefficients); and (4) water demands and climatic and crop data. In CNN models, the training method used is a standard back-propagation variation known as extended-delta-bar-delta. Different neural architectures are compared whose learning is carried out by controlling several threshold determination coefficients. The nonlinear CNN model approach is shown to provide a better prediction of daily water demand than linear multiple regression and univariate time series analysis. The best results were obtained when water demand and maximum temperature variables from the two previous days were used as input data.  相似文献   

4.
In a companion paper a model for the simulation of water flows in irrigation districts was formulated. The model combines a series of modules specialized in surface irrigation, open channel distribution networks, crop growth modeling, irrigation decision making, and hydrosaline balance. The objective of this paper is to calibrate, validate, and apply the model, using the Irrigation District Five of Bardenas (Spain) as a study area. Two years of study were used for the analysis, which could be classified as normal (2000) and dry (2001) from the point of view of crop water requirements. Model calibration was performed in one of the 11 hydrological sectors in which the district is divided. The control variable was the monthly water demand, while the calibration variables were related to irrigation operation and scheduling. The seasonal differences in observed and simulated water demand amounted to 0.9 and 1.9% for 2000 and 2001, respectively. Model validation was performed in the rest of the sectors, and the regression line of observed versus simulated monthly water demand could not be distinguished from a 1:1 line in both years. Model application explored scenarios based on management improvement (controlling the irrigation time) and structural improvement (increasing drainage water reuse for irrigation). These scenarios permitted one to sharply reduce water demand, halve the irrigation return flows, and reduce the daily irrigation period from 24?to?16?h.  相似文献   

5.
6.
Water distribution network that includes supply reservoirs, overhead tanks, consumer demand nodes, interconnecting pipes, lifting pumps, and control valves is the main mode of water supply for majority of the communities especially in urban areas. Supply of required quantity of water and at right time is the primary objective of water distribution network analysis. The analysis of water distribution networks can be broadly classified into design and operation problems and both problems have been the focus of many researchers over the past three decades. In the water distribution network design problems, the target is attaining the cost effective configuration that satisfies the minimum hydraulic head requirement at the demand nodes. In this paper, a new algorithm for design of water distribution network namely “heuristics-based algorithm” which completely utilizes the implicit information associated with the water distribution network to be designed has been proposed and validated with two water distribution networks. It is found that the proposed algorithm performs well for the least-cost design of water distribution networks.  相似文献   

7.
This paper presents and discusses a new static solver that implements the pseudotransient continuation method for the quasi-steady state analysis, or extended-period simulation of water distribution systems. The implementation is based on the concept of virtual tanks and has a clear physical meaning. The steady state solver described in this paper can analyze a pipe network under pressure deficient conditions and is free from some convergence problems that occur in the Newton-Raphson method-based solvers when analyzing a pipe network with control devices. The numerical examples considered in the paper demonstrate the convergence of the proposed method in cases where existing static solvers (e.g., that of the EPANET 2 hydraulic simulator) fail.  相似文献   

8.
The behavior of transients in water pipe networks is well understood but the influence of modulating control valves on this behavior is less well known. Experimental work on networks supplied through pressure reducing valves (PRVs) has demonstrated that, in certain conditions, undesirable phenomena such as sustained or slowly decaying oscillation and large pressure overshoot can occur. This paper presents results from modeling studies to investigate interaction between PRVs and water network transients. Transient pipe network models incorporating random demand are combined with a behavioral PRV model to demonstrate how the response of the system to changes in demand can produce large or persistent pressure variations, similar to those seen in practical experiments. A proportional-integral-derivative (PID) control mechanism, to replace the existing PRV hydraulic controller, is proposed and this alternative controller is shown to significantly improve the network response. PID controllers are commonly used in industrial settings and the methods described are easy to implement in practice.  相似文献   

9.
10.
In this paper, unsteady water quality modeling and the associated sensitivity equations are solved for water distribution systems. A new solution algorithm is proposed, designed for slow varying velocity and based on a time splitting method to separate and solve efficiently each phenomenon such as advection and chemical reaction. This numerical approach allows simultaneous solution of both the direct problem and the sensitivity equations. Special attention is given to the treatment of advection, which is handled with a total variation diminishing scheme. The general model presented in this study permits global sensitivity analysis of the system to be performed and its efficiency is illustrated on two pipe networks. The importance of the sensitivity analysis is shown as part of the calibration process on a real network.  相似文献   

11.
The particular challenges of modeling controlled water systems are discussed. The high degree of freedom due to the control structures increases the risk of producing the right output for the wrong reasons. On the other hand, many controlled water systems are (partly) manually operated or at least supervised by an operational water manager. The decisions of these managers are not as rigid as a computer simulated control strategy. Therefore, getting a very close fit with a water-system control model is mostly not possible. A modeling framework is proposed that takes advantage of the vast availability of measurement data in controlled water systems. The water level and flow data at control structures allow for intensive validation and subsystem calibration to reduce the degree of modeling freedom and to model separately the natural rainfall-runoff and hydrodynamic processes. The framework is successfully applied to improve a simulation model of the controlled water system of Rijnland, The Netherlands. The yearly volume error was reduced from 11% to less than 1% and as a consequence, the short-term peak events were modeled more accurately as well. The resulting water-system control model is more reliable for both design studies and operational decision support. The framework will contribute to prepare more reliable simulation models of controlled water systems.  相似文献   

12.
In this study optimum design of municipal water distribution networks for a single loading condition is determined by the branch and bound integer linear programming technique. The hydraulic and optimization analyses are linked through an iterative procedure. This procedure enables us to design a water distribution system that satisfies all required constraints with a minimum total cost. The constraints include pipe sizes, which are limited to the commercially available sizes, reservoir levels, pipe flow velocities, and nodal pressures. Accuracy of the developed model has been assessed using a network with limited solution alternatives, the optimal solution of which can be determined without employing optimization techniques. The proposed model has also been applied to a network solved by others. Comparison of the results indicates that the accuracy and convergence of the proposed method is quite satisfactory.  相似文献   

13.
Extended-period simulation of incompressible and inertialess flow in water distribution systems is normally done using numerical integration techniques, although regression methods are also sometimes employed. A new method for extended-period simulation, called the explicit integration (EI) method, is proposed. The method is based on the premise that a complex water distribution system can be represented by a number of simple base systems. The simple base systems are selected in such a way that their dynamic equations can be solved through explicit integration. In this paper a simple base system consisting of a fixed-head reservoir feeding a tank through a single pipeline is analyzed. It is then illustrated how a complex water distribution system can be decoupled into simple base systems and its dynamic behavior simulated using a stepwise procedure. The EI method is compared to the commonly used Euler numerical integration method using two example networks. It is shown that the accuracy of the EI method is considerably better than that of the Euler method for the same computational effort.  相似文献   

14.
Efficient water management is one of the key elements in successful operation of irrigation schemes in arid and semiarid regions. An integrated water management model was developed by combining an unsaturated flow model and a groundwater simulation model. These combined models serve as a tool for decision making in irrigation water management to maintain the water tables at a safe depth. The integrated model was applied on a regional scale in Sirsa Irrigation Circle, covering about a 0.42 million ha area in the northwestern part of Haryana, India, which is faced with serious waterlogging and salinity problems in areas underlain with saline ground irrigated by the canal network. The model was calibrated using the agrohydrologic data for the period 1977–1981 and validated for the period 1982–1990 by keeping the calibrating parameters unchanged. The model was used to study the long-term impact of two water management interventions related to the canal irrigation system—change in pricing system of irrigation water, and water supply according to demand—on the extent of waterlogging risk. Both of these strategies, if implemented, would considerably reduce aquifer recharge and consequently waterlogging risk, compared to the existing practice. The water supply according to demand strategy was slightly more effective in reducing aquifer recharge than the water pricing intervention. The implementation of the proposed water pricing policy would pose no problem in fitting into the existing irrigation system, and thus it would be easier to implement, compared to the water supply according to demand strategy, when taking technical, financial, and social considerations into account.  相似文献   

15.
The interbasin water transfer project is an alternative to balance the nonuniform temporal and spatial distribution of water resources and water demands, especially in arid and semi arid regions. A water transfer project can be executed if it is environmentally and economically justified. In this study, the feasibility of two interbasin water transfer projects from Karoon River in the western part of Iran to the central part of the country is investigated. An optimization model with an economic objective function to maximize the net benefit of the interbasin water transfer projects is developed. The planning horizon of the model is 23 years (the length of historical data); and it is solved using genetic algorithm. In order to consider environmental impacts of water transfer projects, a water quality simulation model has been used. Then, an Artificial Neural Network model is trained based on the simulation results of a river water quality model in order to be coupled with the optimization model. The outputs of the optimization model are the value of economic gain of the sending (Karoon) basin to offset the loss of agricultural income and environmental costs. The optimal polices for water transfer during the planning horizon has been generated using the coupled simulation-optimization model. Then, operating rules are developed using a K Nearest Neighborhood model for the real time water transfer operation. The results show the significant value of using the proposed algorithm and economic evaluation for water transfer projects.  相似文献   

16.
Currently the modeling of check valves and flow control valves in water distribution systems is based on heuristics intermixed with solving the set of nonlinear equations governing flow in the network. At the beginning of a simulation, the operating status of these valves is not known and must be assumed. The system is then solved. The status of the check valves and flow control valves are then changed to try to determine their correct operating status, at times leading to incorrect solutions even for simple systems. This paper proposes an entirely different approach. Content and co-content theory is used to define conditions that guarantee the existence and uniqueness of the solution. The work here focuses solely on flow control devices with a defined head discharge versus head loss relationship. A new modeling approach for water distribution systems based on subdifferential analysis that deals with the nondifferentiable flow versus head relationships is proposed in this paper. The water distribution equations are solved as a constrained nonlinear programming problem based on the content model where the Lagrangian multipliers have important physical meanings. This new method gives correct solutions by dealing appropriately with inequality and equality constraints imposed by the presence of the flow regulating devices (check valves, flow control valves, and temporarily closed isolating valves). An example network is used to illustrate the concepts.  相似文献   

17.
This paper proposes a novel heuristic-based and cellular automata-inspired approach to the optimal design of water distribution networks. The design of water distribution networks is of central importance to the water industry, but many networks cannot be optimally designed by traditional techniques due to their complexity. Genetic algorithms have become a state-of-the-art technique for this purpose but are hampered by the fact that they are population based and require a large number of model evaluations to achieve good solutions. The proposed approach uses a parallel, localist, heuristic-based algorithm to optimally design water distribution networks requiring only a limited number of model evaluations. The algorithm is applied to a well-known simple test network and two real water distribution systems in the U.K. The results indicate that the proposed cellular approach is a viable alternative to genetic algorithm approaches while using only a fraction of the computational time required by its evolutionary counterpart.  相似文献   

18.
Considering Actual Pipe Connections in Water Distribution Network Analysis   总被引:1,自引:0,他引:1  
The classical assumption of representing total demand along a pipe as two lumped withdrawals at its terminal nodes is hitherto common. It is a simplification of the network topology which is useful in order to drastically reduce the number of nodes during network simulation. Conversely, this simplification does not preserve energy balance equation of pipes and, for this reason, it is an approximation that could generate significant head loss errors. This paper presents a modification of the global gradient algorithm (GGA) which entails an enhancing of GGA (EGGA) permitting the effective introduction of the lumped nodal demands, without forfeiting correctness of energy balance, by means of a pipe hydraulic resistance correction. The robustness and convergence properties of the algorithm are compared with those of the classical GGA. Furthermore, the effectiveness of EGGA is demonstrated by computing the network pressure status under different configurations of the connections along the pipes of a test network.  相似文献   

19.
This paper presents and discusses an extension of the pseudotransient continuation-based steady state solver for hydraulic networks proposed previously to the case of zero flow rates. The original solver, which reduces the solution of the governing nonlinear algebraic equations to the numerical integration of an initial-value problem, has problems in situations in which the head derivative of the flow rate tends to infinity, as is the case with zero flow rates. The extension is on the basis of the use of a model headloss-flow relationship that coincides with the true one at zero and has a finite head derivative at that point. This modified steady state solver is free from some convergence problems that occur in Newton-Raphson method-based solvers when analyzing a pipe network with control devices. The paper includes the results of the numerical analysis of test networks, which demonstrate the convergence of the modified steady state solver for cases in which existing steady state solvers have troubles.  相似文献   

20.
Significant improvements in the profitability and sustainability of irrigated areas can be obtained by the application of new technologies. In this work, a model for the simulation of water flows in irrigation districts is presented. The model is based on the combination of a number of modules specialized on surface irrigation, open channel distribution networks, crop growth modeling, irrigation decision making, and hydrosaline balances. These modules are executed in parallel, and are connected by a series of variables. The surface irrigation module is based on a numerical hydrodynamic routine solving the Saint Venant equations, including the heterogeneity of soil physical properties. The simulation of water conveyance is performed on the basis of the capacity of the elements of the conveyance network. Crop growth is simulated using a scheme derived from the well-known model CropWat. The irrigation decision making module satisfies water orders considering water stress, yield sensitivity to stress, multiple water sources, and the network capacity. Finally, the hydrosaline module is based on a steady state approach, and provides estimations of the volume and salinity of the irrigation return flows for the whole irrigation season. The application of the model to district irrigation management and modernization studies may be limited by the volume of data required. In a companion paper, the model is calibrated, validated, and applied to a real irrigation district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号