首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以苦荞蛋白作为底物,采用碱性蛋白酶Alcalase 2.4 L、木瓜蛋白酶、胃蛋白酶、胰蛋白酶以及胃蛋白酶加胰蛋白酶模拟体内蛋白消化,制备苦荞麦蛋白水解物。采用DPPH及ABTS~+·法比较不同的蛋白水解物与水解前苦荞蛋白的体外抗氧化活性。结果表明:不同蛋白酶水解产物水解度由高到低的顺序为:碱性蛋白酶胃蛋白酶~胰蛋白酶胃蛋白酶木瓜蛋白酶胰蛋白酶,其中碱性蛋白酶水解苦荞蛋白水解度达29.95%。苦荞蛋白本身具有一定的抗氧化能力,其中DPPH清除率及ABTS~+·清除率最高分别达71.91%及11.25%,但均显著低于阳性对照Vc。随着水解程度的增加,苦荞蛋白水解产物抗氧化能力逐渐增强。其中,以碱性蛋白酶酶解产物抗氧化活性最高,其DPPH清除率及ABTS~+·清除率最高分别为91.65%(0.5 mg/mL)及16.67%(1 mg/mL),均显著高于原苦荞蛋白。其中,碱性蛋白酶水解产物的DPPH自由基清除率在高浓度(0.5mg/mL)条件下,与阳性对照Vc持平。同时碱性蛋白酶酶解产物抗氧化性(DPPH清除率及ABTS~+·清除率)显著优于其他蛋白酶解产物。因此,苦荞麦蛋白采用碱性蛋白酶解制备苦荞水解产物可作为天然的抗氧化剂。  相似文献   

2.
采用Alcalase酶和木瓜蛋白酶分别对高温大豆粕进行酶解,通过控制酶解反应得到水解度为5%、10%和15%的6种水解产物,研究两种酶对不同水解度的水解产物理化特性的影响。结果表明,Alcalase酶和木瓜蛋白酶均可产生6种不同分子量范围的水解产物,但各部分比例具有显著差异(P0.5),其平均分子量随水解度的增加逐渐减少,Alcalase酶的水解产物中小于2562 Da小分子量肽所占比例更高。豆粕蛋白的疏水基团在酶解反应中发生暴露与断裂的数量差,导致其表面疏水性随水解度增加呈现先下降再上升的变化,即水解度为10%的表面疏水性最低。zeta电势的绝对值随水解度不断上升,分子间的斥力增大,相同水解度下两种酶对zeta电势的影响并不显著。此外,在pH值为3、5、7和9时,水解产物的溶解性随着水解度的增加而逐渐增高,乳化活性和乳化稳定性则逐渐降低。  相似文献   

3.
Protein hydrolysates from underutilised meriga (Cirrhinus mrigala) fish egg were prepared by using commercial Alcalase and papain enzymes. The degree of hydrolysis was 62% for Alcalase and 17.1% for papain, after 90 min digestion at 50–55 and 60–65 °C, respectively. The protein content of Alcalase-produced hydrolysate was higher (85%) than that of papain hydrolysate (70%) (p < 0.05). Hydrolysis by both enzymes increased protein solubility of fish egg protein hydrolysates to above 72.4% over a wide pH range (2–12). Results showed that the hydrolysates had good fat absorption capacity (0.9 and 1.0 g/g sample), foam capacity (70% and 25%) and emulsifying capacity (4.25 and 5.98 ml/g hydrolysate), respectively for Alcalase and papain protein hydrolysates. Gel filtration chromatograms and SDS–PAGE analysis indicated the distribution of smaller peptides. These results suggested that fish egg protein hydrolysates could be useful in the food industry.  相似文献   

4.
This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100°C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50°C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (β-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of β-lactoglobulin, α-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4·7H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of new peptides with greater ability to bind with iron. Alcalase F-1 had higher Ala (18.38%), Lys (17.97%), and Phe (16.58%) concentrations, whereas the presence of Pro, Gly, and Tyr was not detected. Alcalase was more effective than other enzymes at producing a hydrolysate for the separation of iron-binding peptides derived from WPC.  相似文献   

5.
酶解水牛奶酪蛋白制备抗氧化活性肽工艺的研究   总被引:3,自引:0,他引:3  
以水解度、还原能力和DPPH自由基清除率为检测指标,比较筛选碱性蛋白酶、中性蛋白酶、胰蛋白酶、木瓜蛋白酶和胃蛋白酶水解水牛奶酪蛋白制备抗氧化活性肽,筛选出中性蛋白酶是最适用酶。应用单因素和响应面法对酶解工艺进行优化。结果表明:中性蛋白酶酶解酪蛋白的最佳工艺参数:pH为6.9,温度为46℃,酶与底物浓度比为4.6%,酶解时间4.0h,此时10mg/mL酶解物的还原能力为0.457。实测结果与预测值符合性良好。  相似文献   

6.
猪血红蛋白酶解制备ACE抑制肽的研究   总被引:2,自引:2,他引:0  
本实验选用碱性蛋白酶、胰蛋白酶、胃蛋白酶、风味蛋白酶、中性蛋白酶和木瓜蛋白酶等六种商业蛋白酶在各自最适反应条件下分别水解猪血红蛋白12h,研究其水解产物对血管紧张素转换酶抑制率和蛋白水解度的影响。结果显示:采用胃蛋白酶酶解获得的产物ACE抑制率最高。胃蛋白酶的酶解条件为底物5%(质量分数),酶与底物浓度比E:S=3%,温度37℃,pH2.0,水解4h后其ACE抑制率为81.10%,水解度为6.64%。  相似文献   

7.
采用胰蛋白酶、碱性蛋白酶、中性蛋白酶水解花生蛋白,研究了水解过程中水解度的变化,并对水解产物的ACE抑制活性进行了探讨。得出三种酶对花生蛋白的水解作用:碱性蛋白酶>胰蛋白酶>中性蛋白酶。碱性蛋白酶水解产物ACE抑制活性明显高于胰蛋白酶和中性蛋白酶,水解产物的ACE抑制活性高达89.73%,中性蛋白酶水解产物ACE抑制率仅为27.24%。  相似文献   

8.
利用碱性蛋白酶(Alcalase)、风味蛋白酶(Flavourzyme)和复合蛋白酶(Protamex)对高底物浓度(135g/L)玉米蛋白进行双酶复合水解,研究复合水解对水解物的水解度、可溶性蛋白质含量和抗氧化活性的影响,并对双酶酶解效果较好的酶解液进行了分子量分布测定。结果表明,Flavourzyme和Alcalase、Flavourzyme和Protamex、Protamex和Alcalase顺次水解玉米黄粉,总水解度分别为27.11%、26.95%和19.76%,可溶性蛋白质含量分别为50.33、40.32、48.85mg/ml,抗氧化活性分别为634.35、576.79和593.21 U/ml。多肽分子量主要分布在5 801.170~238.962u,与单酶水解相比均有显著提高。  相似文献   

9.
Heat-denatured whey protein isolate was hydrolyzed with trypsin, α-chymotrypsin, Alcalase or Neutrase to 2.8, 4.3, 6.0 or 8.0% degree of hydrolysis. Hydrolysates were fractionated by ultrafiltration and freeze-dried. Protein content of retentates showed little variation but permeates differed with enzyme. Surface hydrophobicity increased with hydrolysis but was not linear except for α-chymotrypsin. Ultrafiltration increased solubility and the permeates and retentates had better solubility than hydrolysates. Retentates had higher emulsifying activity index than hydrolysates while permeates did not form stable emulsions. Permeates formed stable foams but hydrolysates and retentates showed poor foaming characteristics. Specificity of the enzyme, and degree of hydrolysis influenced the functional properties of the peptides. Fractions generated by trypsin, at all levels of hydrolysis generally had higher solubility, emulsifying properties and foaming properties. Permeates from Alcalase hydrolysis had the best foam capacity but low foam stability.  相似文献   

10.
小麦蛋白是小麦淀粉加工的副产物,酶解是提高小麦蛋白溶解性和功能性的有效方式,而酶解用酶种类可能对酶解产物的功能性如抗氧化活性有一定影响。采用碱性蛋白酶、中性蛋白酶、胃蛋白酶、风味蛋白酶、胰蛋白酶、木瓜蛋白酶6种常用的蛋白酶分别对小麦蛋白进行酶解,并对酶解4 h后酶解物的多肽得率、分子质量分布、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除率、超氧阴离子自由基(O_2~-·)清除率、羟自由基(·OH)清除率等反映水解程度和抗氧化能力的主要指标进行评价。结果表明,风味蛋白酶酶解物中多肽得率最高,达91.44%,且分子质量小于3 000 D的多肽含量达76.9%;酶解物质量浓度为3 mg/m L时,木瓜蛋白酶酶解物对DPPH自由基清除作用最好,清除率为65.12%(P0.01),其次是风味蛋白酶(58.43%)和碱性蛋白酶(55.29%);碱性蛋白酶酶解物对O_2~-·清除率效果最好,清除率为58.68%(P0.01),其次是风味蛋白酶(49.25%);碱性蛋白酶和木瓜蛋白酶酶解物对·OH清除效果最佳,清除率分别为59.23%和58.16%。结果说明,蛋白酶种类对小麦蛋白酶解物抗氧化活性影响显著,风味蛋白酶对提高蛋白水解程度和生成小分子质量多肽的作用明显,而碱性蛋白酶、木瓜蛋白酶和风味蛋白酶对提高酶解产物抗氧化活性效果较好。  相似文献   

11.
分别采用Protamex、Alcalase、Neutrase、Flavourzyme、Proleather FG-F、木瓜蛋白酶水解杏仁蛋白,利用高效液相色谱法测定水解物对血管紧张素转化酶(ACE)的抑制活性,以水解度(DH)和水解产物对ACE的抑制率为指标对酶解过程进行分析,并研究水解物的体外消化稳定性。结果表明,Proleather FG-F 和Alcalase 对杏仁蛋白有较好的水解效果,其水解物对ACE 抑制率较高,IC50 分别为1.24mg/ml 和0.98mg/ml。模拟胃肠消化实验结果表明,在消化酶的作用下杏仁蛋白水解物仍具有较强的ACE 抑制活性。  相似文献   

12.
This study aimed to evaluate the effectiveness of hydrolysates, which were obtained from the scales of silver carp (Hypophthalmichthys molitrix) by papain, flavourzyme, and Alcalase 2.4 L, as natural antioxidants in silver carp mince and surimi gels during storage at 4 °C. The hydrolysates that possess greater in vitro antioxidant activities (DPPH radical-scavenging activity, Fe2+-chelating activity, and reducing power), including hydrolysates catalyzed by papain at 10 min (HP), flavourzyme at 5 min (HF), and Alcalase 2.4 L at 5 min (HA), were chosen as additives. Color, cooking loss, conjugated dienes (CDs), thiobarbituric acid reactive substances (TBARS), fatty acids, and sensory scores of mince were measured on days 0, 2, 4, 6, and 8 during 4 °C storage; additionally, whiteness, breaking force, deformation, gel strength, and sensory score of surimi gels were measured on days 1, 3, 5, 7, 9, and 11 during 4 °C storage. The results indicate that HA was conducive to lowering the cooking loss of mince and that HF significantly (P?<?0.05) reduced the CDs value of mince. For surimi gels, HF improved whiteness, deformation, and gel strength. Hence, HF could serve as a natural antioxidant during early oxidation and improve gel formation of silver carp products.  相似文献   

13.
ABSTRACT:  The effects of different proteolytic treatments on the physiochemical and bitterness properties of pea protein hydrolysates were investigated. A commercial pea protein isolate was digested using each of 5 different proteases to produce protein hydrolysates with varying properties. After 4 h of enzyme digestion, samples were clarified by centrifugation followed by desalting of the supernatant with a 1000 Da membrane; the retentates were then freeze-dried. Alcalase and Flavourzyme™ produced protein hydrolysates with significantly higher ( P < 0.05) degree of hydrolysis when compared to the other proteases. Flavourzyme, papain, and alcalase produced hydrolysates that contained the highest levels of aromatic amino acids, while trypsin hydrolysate had the highest levels of lysine and arginine. Papain hydrolysate contained high molecular weight peptides (10 to 178 kDa) while hydrolysates from the other 4 proteases contained predominantly low molecular weight peptides (≤ 23 kDa). DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity of the Flavourzyme hydrolysate was significantly ( P < 0.05) the highest while alcalase and trypsin hydrolysates were the lowest. Inhibition of angiotensin converting enzyme (ACE) activity was significantly higher ( P < 0.05) for papain hydrolysate while Flavourzyme hydrolysate had the least inhibitory activity. Sensory analysis showed that the alcalase hydrolysate was the most bitter while papain and α-chymotrypsin hydrolysates were the least. Among the 5 enzymes used in this study, papain and α-chymotrypsin appear to be the most desirable for producing high quality pea protein hydrolysates because of the low bitterness scores combined with a high level of angiotensin converting enzyme inhibition and moderate free radical scavenging activity.  相似文献   

14.
Antioxidant activities of myofibrillar protein hydrolysates (MPH) prepared from patin (Pangasius sutchi) using papain and Alcalase® 2.4 L with different degrees of hydrolysis (DH) were investigated. With a DH of 65.83%, the hydrolysate prepared with papain exhibited the maximum of 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging activity (71.14%) with a reducing power of 0.310. At a concentration of 1 mg mL?1, the papain‐MPH exhibited a Trolox equivalent antioxidant capacity (TEAC) of 70.50 ± 1.22 μmol g?1 protein. With a DH of 83.6%, the Alcalase‐MPH had the highest metal‐chelating activity. Low molecular weight peptides showed higher antioxidant activities than high molecular weight peptides. Both papain‐MPH and Alcalase‐MPH contained high amounts of the essential amino acids (48.71% and 48.10%, respectively) with glutamic acid, aspartic acid and lysine as the dominant amino acids. These results suggest that the protein hydrolysates derived from patin may be used as an antioxidative ingredient in both functional food and nutraceutical applications.  相似文献   

15.
A crude protease extract (CPE) was prepared from Aspergillus oryzae HN 3.042 in this work. Three commercial proteases (Alcalase 2.4L, Protamex and papain) and CPE were employed to hydrolyse defatted peanut meal (DPM). CPE was found to be the most effective protease with protein recovery of 80.6%. Moreover, CPE produced a higher degree of hydrolysis (DH, 43.4%) than the tested commercial proteases. The test of molecular weight distribution indicated that DPM proteins were mainly consisted of >10 KDa fraction (86.6%), whereas 3–6 KDa fraction was observed to be the main fraction of all the hydrolysates. CPE hydrolysate possessed a higher nutritional quality than DPM and other hydrolysates on the basis of FAO/WHO (1991) reference pattern. The sensory taste evaluation showed that CPE hydrolysate had better taste than other hydrolysates.  相似文献   

16.
分别采用Alcalase、Neutrase、Protamex、Flavorzyme、胃酶、木瓜蛋白酶对小麦面筋蛋白进行水解研究,结果表明,Alcalase能有效水解面筋蛋白,并确定其最佳水解条件:pH 9.0,温度60℃,底物浓度5%,酶浓度E/S为1%,即0.03AU/g蛋白,反应时间4hr左右,在此条件下,水解度可达 20%左右。  相似文献   

17.
鳄鱼皮酶解产物功能特性及抗氧化活性   总被引:1,自引:1,他引:0  
为了解鳄鱼皮酶解产物功能特性和抗氧化活性,采用2种商业蛋白酶(木瓜蛋白酶、碱性蛋白酶)在各自最适反应条件下分别酶解鳄鱼皮,研究水解度(DH)、酶种类及pH值对酶解产物功能特性及抗氧化活性的影响.结果显示:随着酶解时间延长,鳄鱼皮水解度逐渐增加,鳄鱼皮在碱性蛋白酶酶解作用下水解度较高,水解4h时可达12%;木瓜蛋白酶酶解产物与碱性蛋白酶酶解产物的溶解性差异不显著(P>0.05).相同水解度下,碱性蛋白酶酶解产物的热稳定性在pH4时优于木瓜蛋白酶酶解产物.酶解时间在1h之内,木瓜蛋白酶酶解物亚铁离子螯合力明显增强;随着时间延长,酶解产物亚铁离子螯合能力变化不显著(P>0.05).酶解3h后碱性蛋白酶酶解产物亚铁离子螯合能力高于木瓜蛋白酶酶解产物,但木瓜蛋白酶酶解产物具有较强的清除DPPH自由基能力.综上表明,碱性蛋白酶水解作用的鳄鱼皮水解度较高,其酶解产物乳化活性和热稳定性优于木瓜蛋白酶酶解产物;鳄鱼皮酶解产物抗氧化能力较强,有较高的开发利用价值.  相似文献   

18.
Limited chickpea protein hydrolysates ranging from 1% to 10% degree of hydrolysis were produced from chickpea protein isolate (CPI) using Alcalase immobilised on glyoxyl-agarose gels. Alcalase-glyoxyl derivative produced after 24 h of immobilisation at room temperature was 24 times more stable than soluble enzyme and presented approximately 51% of the activity of Alcalase. The chemical composition of chickpea hydrolysates were very close to that of CPI. Solubility, oil absorption, emulsifying activity and stability, and foaming capacity and stability were determined. All protein hydrolysates showed higher solubility than intact proteins, especially at pHs near isoelectric point of native chickpea proteins. Moreover, all hydrolysates had better functional properties, except emulsifying activity, than the original protein isolate.  相似文献   

19.
Commercial whey protein concentrate (WPC) was hydrolysed with either Alcalase 2.4 FG (Novo Nordisk), or papain (Sigma) (in one‐step process) or with two enzymes (in two‐step process) to determine the changes in the immunoreactivity of α‐lactalbumin and β‐lactoglobulin. Enzymatic hydrolysis of WPC was performed by pH‐stat method. Hydrolysates were analysed using sodium dodecyl sulphate‐polyacrylamide gel electrophoresis, immunoblotting and size‐exclusion chromatography (SE‐HPLC). Immunoreactive properties of peptide fractions separated from the hydrolysates by fast protein liquid chromatography (FPLC) were determined using dot‐immunobinding and enzyme‐linked immunosorbent assay (ELISA) methods. Finally the sensory analysis was used to confirm organoleptic changes resulting from the application of different enzymes. The ‘two‐step’ process was observed to be the most effective however allergenic epitopes were still present, as it was found by ELISA with anti‐α‐la and anti‐β‐lg antibodies. The addition of papain as the second enzyme in the hydrolysis process contributed to the improvement of the sensory properties of WPC hydrolysate as compared with the Alcalase hydrolysate. Alcalase‐papain partially hydrolysated WPC can be found a promising base for production of the tolerogenic formula.  相似文献   

20.
The antioxidant and biochemical properties of enzymatically hydrolyzed silver carp (Hypophthalmichthys molitrix) protein were studied. The molecular weight of the main peaks of the hydrolysates by both Alcalase and Flavourzyme was lower than 5000 Da. The hydrolysates treated by Alcalase for ?1.5 h (hydrolysis time) showed that the relative proportion of <1000 Da fraction was more than 60%. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range; and when the hydrolysis time was prolonged (>3 h), the colour of the hydrolysates turned yellowish. The protein hydrolysates exhibited significant hydroxyl radical-scavenging activity and inhibited linoleic acid peroxidation. For Alcalase treatment, the hydroxyl radical-scavenging activity and the inhibition of linoleic acid peroxidation of hydrolysates appeared to reach a maximum level for 1.5, 2.0 h of hydrolysis, respectively; and their antioxidant activity was close to that of α-tocopherol in a linoleic acid emulsion system, and carnosine in the 2-deoxyribose oxidation system. The hydrolysate with lower molecular weight distribution possessed stronger Fe2+ chelation ability at a sample concentration of 5.0 mg/mL. The results suggested that the antioxidant activity of silver carp protein hydrolysates were related to its degree of hydrolysis (DH), hydrolysis time and molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号