首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
氢能的利用是当今世界发展必然趋势,使用超临界氢存储技术可对氢能进行储存。介绍了超临界氢,并详细分析了超临界储氢、气态压缩储氢和低温液态储氢的优缺点。然后,对超临界储氢技术进行了详细论述,介绍了超临界吸附储氢和低温压力容器储存超临界氢两种技术的研究进展。最后,根据超临界氢存储技术的研究现状,提出了一些对超临界氢存储技术的发展及应用具有一定指导意义的建议。  相似文献   

2.
国内外氢能发展概况   总被引:6,自引:0,他引:6  
闫卫东  奚甡  刘吉祥 《中国能源》2003,158(2):17-20
在21世纪新能源中,清洁而高效的氢可能扮演重要的角色,其它各种能源都可以转化为比较容易储存的氢。我国氢源丰富,技术研发在国际上处于领先水平,应加快燃料电池汽车的市场化步伐,积极培育以储氢罐、加氢站、输氢管道等为标志的氢经济或氢产业。  相似文献   

3.
杜元伟 《太阳能》2002,(5):15-15
氢能作为理想的清洁能源之一,已广泛引起人的重视。许多科学家认为,氢能在21世纪能源舞上将成为一种举足轻重的能源。氢能,是指氢与氧反应放出的能量。作为能,氢能有以下主要特点:(1)能量高。除核燃外,氢的发热值是目前所有燃料中最高的(是汽的3倍)。氢的高能,使氢成为推进航天器的重要料之一。(2)氢本身无毒,燃烧产物是水,无染,且能循环使用。(3)氢燃烧性能好,点燃。(4)利用形式多,可以以气态、液态或固定属氢化物出现,能适应贮运及各种应用环境的不要求。然而在实际应用中,制氢储氢输氢等环节存在若干问题…  相似文献   

4.
伴随着化石燃料的枯竭和日益严重的环境问题,氢作为一种高效、清洁的可再生能源备受重视。分析目前储氢的各种技术,对车载氢能源开发的可行性进行预测并对其未来做出展望。  相似文献   

5.
氢——未来的绿色燃料   总被引:4,自引:0,他引:4  
石油燃料在几十年内逐渐耗尽,而燃料电池以其高效、清洁的特点将会成为未来交通的推动力.本文对可再生绿色能源载体--氢的研制方法进行了研究,详细阐述了两种制氢的工艺过程--热化学工艺和电解水工艺过程.给出了氢气的四种储存方法,其中金属氢化物和碳质吸附储氢两种方法,由于安全可靠,储存效率较高,是目前广泛研究的储氢方式.本文综述了氢能系统的各项技术,并对未来的发展趋势作了展望.  相似文献   

6.
燃料电池车车载储氢系统的技术发展与应用现状   总被引:11,自引:1,他引:11  
综述了燃料电池车车载储氢系统技术,包括高压氢、液氢、金属氢化物、低温吸附、纳米碳管高压吸附以及液体有机氢化物等的研究进展及其车载应用现状。参照燃料电池车对车载储氢系统单位重量储氢密度与体积储氢密度的目标要求,对目前已应用和处于研发阶段的一些储氢技术的性能指标和存在问题进行了分析讨论。同时对目前该领域的若干新的研究报道,如超高压轻质复合容器、混合储氢容器、b.c.c.储氢合金、超级活性碳和“浆液”双相储氢等,也作了简要介绍。  相似文献   

7.
氢气燃烧时不会产生污染,是极具潜力的二次能源。20世纪以来,世界各国对于氢能源开发与利用的重视程度不断提高。相比化石燃料,氢气无论是应用于内燃机还是燃料电池,都具有更高的效率。储氢也逐渐成为了氢能产业链的核心环节。中国立足碳达峰、碳中和目标,积极推动氢能产业发展,氢能产业发展潜力正逐渐释放,并将逐步成为中国能源战略的重要组成部分。随着氢能在汽车动力中的应用,车载高压储氢压力容器技术也将快速发展。  相似文献   

8.
氢能源发展研究现状   总被引:1,自引:0,他引:1  
全面概述了氢能源在国内外的发展情况,并就氢能源的生产、储存、运输等技术作了详细全面的概述和分析;分析了氢能源在安全使用方面的优缺点,同时在氢能源的开发利用研究方面提出了新的观点.  相似文献   

9.
在“双碳”战略目标背景下,氢能产业在深度和广度上都获得了高速发展,上游制氢资源丰富,下游用氢市场广阔,由于跨地区氢能供需失衡,中游氢能储运已经成为氢能产业链的短板,严重制约了氢能产业的进一步发展。在这种情况下,有机液体载氢(LOHC)储运技术应运而生,以一种化学储氢方式完美克服了高压气态储氢、低温液态及固态等物理储氢方式的缺陷。与其他氢能储运技术相比,LOHC储运技术在安全、成本、技术、效率等方面具有突出的优势,有望补齐氢能储运的短板,完善氢能产业链。本文对三种主要LOHC储运技术,从工艺原理、储氢载体、综合成本、科研发展等方面进行比较分析。认为甲苯、N-乙基咔唑和二苄基甲苯等三种LOHC储运技术已完成了理论研究、实验验证及中试放大等工作,技术趋于完善,具备了工业化推广应用的条件。在未来展望角度上,对包括大型氢能储运基地和分布式脱氢加氢一体化站在内的两种LOHC储运技术的新型应用场景进行了分析,并梳理了目前LOHC储运技术研究面临的问题和研究方向,并提出了希望和建议。  相似文献   

10.
本文结合我国目前可再生能源与氢能的发展趋势,对国内外当前地下盐穴储氢技术的发展现状进行了综述,指出江苏省拥有丰富的可再生能源与地下盐穴资源,其可再生资源与储能地址的重合性较好可作为发展该技术路线的理想选址。并对可再生能源与盐穴氢储能耦合发电技术的可行性与该技术路线全周期的发电成本进行了系统分析。这一技术路线通过可再生能源电解水制氢以化学能形式回收可再生能源,然后通过地下盐穴大规模储能,并在需要时利用燃料电池再发电将可再生能源重新利用。本文综合考虑和分析了制氢成本、储氢成本以及再发电成本,对该技术路线再发电的度电成本进行了初步分析。结果表明:当前该方式再发电的度电成本较高,为1.88元/kWh左右,其中电费成本和设备成本分别占总成本的61.1%和25.6%。若利用可再生能源发电的过盈电能进行电解水制氢且技术路线中的相关设备成本降低至当前的50%,则该技术路线的度电成本可降低至0.49元/kWh。想要进一步降低该技术路线的发电成本则还需要依赖于技术和制造水平的进步将燃料电池的发电效率进一步提高,若燃料电池效率提升至60%,则该技术路线的度电成本能够进一步降低至0.43元/kWh,基本与当前电价持平,具有实际应用价值。同时该技术路线的发展能够促进相关制造业的发展与技术进步,提高我国能源安全与在国际能源领域的竞争力,并助力我国尽快实现能源结构优化转型和“双碳”目标。随着未来电解槽和燃料电池等设备的技术水平与效率的提升,该技术路线将具有极高的应用前景。  相似文献   

11.
Maritime industry has led renewable energy sources for the greener environment and efficient vehicles that effect by increasing population and energy demands. Hydrogen is one of the most popular of these renewable energy sources and one of the most favourable research area, worldwide. In this study, authors reported the usage of hydrogen fuel cells in marine transport as main power forwarder, their advantages and challenges under the lights on state of art and furthermore new technologies perspective. The latest research activities, hydrogen production and storage methods with challenges are analyzed and the developments of fuel cell based marine vehicles are discussed. In detailed, newly approachment of electrolyses from seawater for sustainable fuel necessity is discussed. As a result, this forseen study is important in terms of handling energy from seawater and compiling the latest technology for marine transport.  相似文献   

12.
Hydrogen energy is a highly efficient and renewable energy carrier. The rapid and sophisticated development of nanotechnologies has promoted the transition of hydrogen storage systems from gaseous/liquid to solid-state. In order to clarify the intrinsic relationship between structure and performance, and to understand the hydrogen absorption and desorption mechanism of materials, electron microscopy (EM) can effectively help us obtain a series of information such as particle size, phase and composition determination, morphology and structure of the materials at nanoscale. The most recent progress of advanced EM techniques applied in solid-state hydrogen storage materials are summarized, which should also inspire future research on energy storage related materials.  相似文献   

13.
In the wake of the apparent impacts of climate change, the world is searching for clean energy transformations and a consequent transition to a carbon-neutral economy and life. The intermittent nature of renewable energy sources introduces several risks, and efficient energy storage technologies are developed to circumvent such issues. However, these storage methods also come with additional costs and uncertainties. Hydrogen is considered a viable option as an energy carrier and storage medium, offering versatility to the energy mix. This study reviews hydrogen production, storage, transmission, and applications avenues, describes the current global hydrogen market and compares national hydrogen strategies. A framework for evaluating the relative competitiveness of natural gas-exporting countries as hydrogen exporters is developed. Qatar's national hydrogen strategy should focus on blue and turquoise hydrogen production in the short/medium term with a mix of green hydrogen in the future term and investment in technological research and development to compete with other gas exporters that have abundant renewable energy potential.  相似文献   

14.
Today, the reduction of fossil fuel resources and the increase of their destructive environmental effects are important challenges. One strategy to this problem is application of new sources of energy supply. Hydrogen can play an important role in future energy supplies due to its unique properties such as clean combustion and high energy content relative to mass. In addition, hydrogen is considered as a green energy because it can be produced from renewable sources and is not polluting. The most important issue in hydrogen as a fuel is its storage. Hydrogen must be stored reversibly in a completely safe manner as well as with high storage efficiencies. One of the best ways to store hydrogen is using of new nanostructured adsorbents. In this study, first strontium hexaferrite (SrFe12O19) nanostructures are synthesized by sol-gel auto-combustion method. Then, the samples structure is studied using various techniques. Furthermore, the nanostructures are used as hydrogen storage materials. Using electrochemical techniques, the hydrogen storage properties of the materials are investigated in alkaline media. The obtained electrochemical results show that the maximum hydrogen storage capacity of SrFe12O19 nanostructures is about 3100 mAh/g.  相似文献   

15.
Hydrogen usage and storage may contribute to reducing greenhouse gas emissions by decarbonising heating and transport and by offering significant energy storage to balance variable renewable energy supply. Underground storage of hydrogen is established in underground salt caverns, but these have restricted geographical locations within the UK and cannot deliver the required capacity. Hydrogen storage in porous geological formations has significant potential to deliver both the capacity and local positioning. This study investigates the potential for storage of hydrogen in porous subsurface media in Scotland. We introduce for the first time the concept of the hydrogen storage play. A geological combination including reservoir, seal and trap that provides the optimum hydrogen storage reservoir conditions that will be potential targets for future pilot, and commercial, hydrogen storage projects. We investigate three conceptual hydrogen storage plays in the Midland Valley of Scotland, an area chosen primarily because it contains the most extensive onshore sedimentary deposits in Scotland, with the added benefit of being close to potential consumers in the cities of Glasgow and Edinburgh. The formations assessed are of Devonian and Carboniferous age. The Devonian storage play offers vast storage capacity but its validity is uncertain due to due to a lack of geological data. The two Carboniferous plays have less capacity but the abundant data produced by the hydrocarbon industry makes our suitability assessment of these plays relatively certain. We conclude that the Carboniferous age sedimentary deposits of the D'Arcy-Cousland Anticline and the Balgonie Anticline close to Edinburgh will make suitable hydrogen storage sites and are ideal for an early hydrogen storage research project.  相似文献   

16.
Overreliance on fossil fuels for human energy needs, combined with the associated negative environmental consequences in terms of greenhouse gas emissions, has shifted our focus to renewable energy sources. Hydrogen has been identified by researchers as an energy source. Hydrogen is a non-carbon-based energy resource that has the potential to replace fossil fuels. This resource is seen as an alternative fuel since it may be produced using environmentally friendly methods.Hydrogen storage is a critical component of the hydrogen economy, particularly when hydrogen utilization on a large scale is required. This paper presents a review of worldwide underground operating and potential sites to provide a clear understanding of the current status of hydrogen storage in the world.The literature survey indicated that underground geological structures have been used to successfully store hydrogen. Some of the criteria used to select these sites for underground hydrogen storage include but are not limited to geological conditions, storage location, availability of brine, presence of insoluble impurities such as dolostone, limestone, or shale, and socio-economic characteristics.The key issues with the hydrogen storage in the subsurface geological structures include but are not limited to microbial, hydrogeological, hydrodynamics, geomechanics, and geochemical facilitated by injected hydrogen which significantly impact the success and operational efficiency of the projects.  相似文献   

17.
To find a solution to efficiently exploit renewable energy sources is a key step to achieve complete independence from fossil fuel energy sources. Hydrogen is considered by many as a suitable energy vector for efficiently exploiting intermittent and unevenly distributed renewable energy sources. However, although the production of hydrogen from renewable energy sources is technically feasible, the storage of large quantities of hydrogen is challenging. Comparing to conventional compressed and cryogenic hydrogen storage, the solid-state storage of hydrogen shows many advantages in terms of safety and volumetric energy density. Among the materials available to store hydrogen, metal hydrides and complex metal hydrides have been extensively investigated due to their appealing hydrogen storage properties. Among several potentials candidates, magnesium hydride (MgH2) and lithium borohydride (LiBH4) have been widely recognized as promising solid-state hydrogen storage materials. However, before considering these hydrides ready for real-scale applications, the issue of their high thermodynamic stability and of their poor hydrogenation/dehydrogenation kinetics must be solved. An approach to modify the hydrogen storage properties of these hydrides is nanoconfinement. This review summarizes and discusses recent findings on the use of porous scaffolds as nanostructured tools for improving the thermodynamics and kinetics of MgH2 and LiBH4.  相似文献   

18.
Effective energy storage and management is needed to manage intermittent renewable energy systems. Several jurisdictions around the world are planning to reduce or close their coal power plants to allow for renewable energy expansion, such as Ontario, Canada. Hydrogen storage, which is a promising energy storage option, is capable of meeting energy requirements that will arise from the shutdown of coal plants. In this paper, both economic and environmental feasibility of a hydrogen system linked with wind and hydroelectric plants in Ontario will be investigated. The Princefarm wind power plant and Beck1 hydro plant with production capacities of 189 MW and 490 MW, respectively, are analyzed in a case study for comparison purposes. The environmental analysis demonstrates the advantageous role of hydrogen storage and energy conversion. The overall system life-cycle yields 31.02 g CO2 eq per 1 kW h power output of the system when hydrogen energy storage is adopted. The payback periods of the systems linked with the Princefarm and Beck1 are also analyzed and found to be about 17 years.  相似文献   

19.
20.
本文介绍了国际上利用可再生能源结合捕集CO2制燃料的最新技术进展。以化学合成的反应热力学为基础,通过分析计算与流程模拟,得到捕集CO2制燃料化学品储电的能耗与?流,初步评估了甲醇作为储存电能介质的能效,并与氢储能及甲烷储能进行了比较分析。比较结果表明,氢储能流程最短,效率最高,但是没有固碳的作用。对于实现储能与固碳,甲醇的氢原子经济性较好。甲烷产物热值与反应热都较高。甲醇储能效率损失主要由前端电解制氢环节造成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号