首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreceptor cells of the Drosophila compound eye begin to develop specialized membrane foldings at the apical surface in midpupation. The microvillar structure ultimately forms the rhabdomere, an actin-rich light-gathering organelle with a characteristic shape and morphology. In a P-element transposition screen, we isolated mutations in a gene, bifocal (bif), which is required for the development of normal rhabdomeres. The morphological defects seen in bif mutant animals, in which the distinct contact domains established by the newly formed rhabdomeres are abnormal, first become apparent during midpupal development. The later defects seen in the mutant adult R cells are more dramatic, with the rhabdomeres enlarged, elongated, and frequently split. bif encodes a novel putative protein of 1063 amino acids which is expressed in the embryo and the larval eye imaginal disc in a pattern identical to that of F actin. During pupal development, Bif localizes to the base of the filamentous actin associated with the forming rhabdomeres along one side of the differentiating R cells. On the basis of its subcellular localization and loss-of-function phenotype, we discuss possible roles of Bif in photoreceptor morphogenesis.  相似文献   

2.
3.
A Pseudomonas aeruginosa gene homologous to the fabG gene, which encodes the NADPH-dependent beta-ketoacyl-acyl carrier protein (ACP) reductase required for fatty acid synthesis, was identified. The insertional mutation of this fabG homolog (herein called rhlG) produced no apparent effect on the growth rate and total lipid content of P. aeruginosa cells, but the production of rhamnolipids was completely abrogated. These results suggest that the synthetic pathway for the fatty acid moiety of rhamnolipids is separate from the general fatty acid synthetic pathway, starting with a specific ketoacyl reduction step catalyzed by the RhlG protein. In addition, the synthesis of poly-beta-hydroxyalkanoate (PHA) is delayed in this mutant, suggesting that RhlG participates in PHA synthesis, although it is not the only reductase involved in this pathway. Traits regulated by the quorum-sensing response, other than rhamnolipid production, including production of proteases, pyocyanine, and the autoinducer butanoyl-homoserine lactone (PAI-2), were not affected by the rhlG mutation. We conclude that the P. aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase absolutely required for the synthesis of the beta-hydroxy acid moiety of rhamnolipids and that it has a minor role in PHA production. Expression of rhlG mRNA under different culture conditions is consistent with this conclusion.  相似文献   

4.
5.
A low-temperature-responsive gene, blt 801, isolated from a winter barley (Hordeum vulgare L.) cDNA library prepared from leaf meristematic tissue, was sequenced. The deduced amino acid sequence predicts a glycine-rich RNA-binding protein (GR-RNP) which was homology to stress-responsive GR-RNPs from several other plant species. BLT 801 is a two-domain protein, the amino-terminal domain comprises a consensus RNA-binding domain similar to that found in many eukaryotic genes and the carboxy-terminal domain is extremely glycine-rich (68.5% glycine). Blt 801 mRNA also accumulates in response to the phytohormone abscisic acid. The protein encoded by blt 801 has been produced as a recombinant fusion protein using a bacterial expression vector. The fusion protein, a chimaera of glutathione S-transferase and BLT 801, has been used in studies to determine nucleic acid binding and other characteristics. Binding studies with single-stranded nucleic acids show that BLT 801 has affinity for homoribopolymers G, A and U but not C, it also binds to single-stranded DNA and selects RNA molecules containing open loop structures enriched in adenine but low in cytosine. Blt 801 has a consensus motif for phosphorylation by cAMP protein kinase (PKA) at the junction between the two domains which can be phosphorylated by PKA in vitro and which, by analogy to animal studies, may have significance for controlling enzyme function.  相似文献   

6.
7.
We found that (LP x C57BL/6)F1 mice could raise a CTL response against parental C57BL/6 cells. These CTLs recognized a maternally transmitted, H2-M3wt-restricted, minor histocompatibility Ag (MiHA) that is widely distributed among many strains of mice and encoded by the COI mitochondrial gene. The wild-type MiHA is the COI N-terminal hexapeptide. Sequencing the 5' end of the COI gene in LP and C57BL/6 mice showed that the LP allele arose by a T-->C transition in the third codon, which caused substitution of threonine for isoleucine. Molecular characterization of this MiHA and the demonstration that it is presented exclusively by H2-M3: 1) support the concept that differential expression of MiHA in MHC-identical animals is caused by polymorphism of the MiHA gene proper; 2) expand our knowledge of the repertoire of self-peptides naturally presented by H2-M3 and show that this MHC class I molecule can present short endogenous peptide ligands; and 3) suggest that mitochondrial DNA mutations that modify the repertoire of H2-M3-associated mitochondrial peptides are representative of mitochondrial DNA mutations in general.  相似文献   

8.
9.
The high-affinity K+ uptake system of plants plays a crucial role in nutrition and has been the subject of extensive kinetic studies. However, major components of this system remain to be identified. We isolated a cDNA from barley roots, HvHAK1, whose translated sequence shows homology to the Escherichia coli Kup and Schwanniomyces occidentalis HAK1 K+ transporters. HvHAK1 conferred high-affinity K+ uptake to a K(+)-uptake-deficient yeast mutant exhibiting the hallmark characteristics of the high-affinity K+ uptake described for barley roots. HvHAK1 also mediated low-affinity Na+ uptake. Another cDNA (HvHAK2) encoding a polypeptide 42% identical to HvHAK1 was also isolated. Analysis of several genomes of Triticeae indicates that HvHAK1 belongs to a multigene family. Translated sequences from bacterial DNAs and Arabidopsis, rice, and possibly human cDNAs show homology to the Kup-HAK1-HvHAK1 family of K+ transporters.  相似文献   

10.
The murI gene of Escherichia coli was recently identified on the basis of its ability to complement the only mutant requiring D-glutamic acid for growth that had been described to date: strain WM335 of E. coli B/r (P. Doublet, J. van Heijenoort, and D. Mengin-Lecreulx, J. Bacteriol. 174:5772-5779, 1992). We report experiments of insertional mutagenesis of the murI gene which demonstrate that this gene is essential for the biosynthesis of D-glutamic acid, one of the specific components of cell wall peptidoglycan. A special strategy was used for the construction of strains with a disrupted copy of murI, because of a limited capability of E. coli strains grown in rich medium to internalize D-glutamic acid. The murI gene product was overproduced and identified as a glutamate racemase activity. UDP-N-acetylmuramoyl-L-alanine (UDP-MurNAc-L-Ala), which is the nucleotide substrate of the D-glutamic-acid-adding enzyme (the murD gene product) catalyzing the subsequent step in the pathway for peptidoglycan synthesis, appears to be an effector of the racemase activity.  相似文献   

11.
12.
13.
Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal membrane binding motif of the protein and resembles a putative fusion peptide. The peptide was found to mimic the behavior of its parent protein bindin with respect to (a) its high affinity for lipid bilayers, (b) the ability to aggregate and fuse vesicles, (c) the binding of Zn2+ by a histidine-rich motif, (d) the tendency to self-assemble, and (e), as indicated earlier, the adhesion to cell surface polysaccharides. Fluorescence and light scattering assays were used here to monitor peptide-induced lipid mixing, leakage, and aggregation of large unilamellar sphingomyelin/cholesterol vesicles. For these activities, B18 requires the presence of Zn2+ ions, with which it forms oligomeric complexes and assumes a partially alpha-helical conformation, as observed by circular dichroism. We conclude that aggregation and fusion involves a "trans-complex" between peptides on apposing vesicles that are connected by Zn2+ bridges.  相似文献   

14.
15.
We have isolated and sequenced the full length cDNA for topoisomerase I. Using degenerate primers, based on the conserved amino acid sequences of five eukaryotic topoisomerase I, a 386 bp fragment was PCR amplified using pea cDNA as template. This fragment was used as a probe to screen a pea cDNA library. Two partial cDNA clones were isolated which were truncated at the 5' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of the gene was 3055 bp with an open reading frame of 2676 bp. The deduced structure of pea topoisomerase I contain 892 amino acids with a calculated molecular weight of 100 kDa and an estimated pI of 9.3. A comparison of the deduced amino acid sequences of the pea topo I with the other eukaryotic topoisomerases clearly suggested that they are all related. Pea topoisomerase I has been overexpressed in E. coli system and the recombinant topoisomerase purified to homogeneity. The purified protein relaxes both positive and negative supercoiled DNA in the absence of divalent cation Mg2+. In the presence of Mg2+ ions the purified enzyme introduces positive supercoils a unique property not reported in any other organism except in archaebacterial topoisomerase I. Polyclonal antibodies were raised against recombinant topoisomerase I and western blotting with sub-cellular fractions indicated the localization of this topoisomerase in pea nuclei.  相似文献   

16.
17.
18.
19.
The Transforming Growth Factor-beta superfamily member decapentaplegic (dpp) acts as an extracellular morphogen to pattern the embryonic ectoderm of the Drosophila embryo. To identify components of the dpp signaling pathway, we screened for mutations that act as dominant maternal enhancers of a weak allele of the dpp target gene zerkn?llt. In this screen, we recovered new alleles of the Mothers against dpp (Mad) and Medea genes. Phenotypic analysis of the new Medea mutations indicates that Medea, like Mad, is required for both embryonic and imaginal disc patterning. Genetic analysis suggests that Medea may have two independently mutable functions in patterning the embryonic ectoderm. Complete elimination of maternal and zygotic Medea activity in the early embryo results in a ventralized phenotype identical to that of null dpp mutants, indicating that Medea is required for all dpp-dependent signaling in embryonic dorsal-ventral patterning. Injection of mRNAs encoding DPP or a constitutively activated form of the DPP receptor, Thick veins, into embryos lacking all Medea activity failed to induce formation of any dorsal cell fates, demonstrating that Medea acts downstream of the thick veins receptor. We cloned Medea and found that it encodes a protein with striking sequence similarity to human SMAD4. Moreover, injection of human SMAD4 mRNA into embryos lacking all Medea activity conferred phenotypic rescue of the dorsal-ventral pattern, demonstrating conservation of function between the two gene products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号