首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
支持向量机是由V.Vapnik等提出一种学习技术,借助于最优化方法解决机器学习问题的新工具,近几年得到了广泛的研究并广泛应用于模式识别等领域。本文主要介绍并比较了基于支持向量机的多类分类算法:“一对一”方法、“一对多”方法以及决策有向无环图方法,通过实验数据可以得知决策有向无环图方法具有较好的分类效果。在不同的情况下,可以采用不同的算法以达到最好的分类效果。  相似文献   

2.
支持向量机多类分类算法研究   总被引:33,自引:4,他引:33  
提出一种新的基于二叉树结构的支持向量(SVM)多类分类算法.该算法解决了现有主要算法所存在的不可分区域问题.为了获得较高的推广能力,必须让样本分布广的类处于二叉树的上层节点,才能获得更大的划分空间.所以,该算法采用最小超立方体和最小超球体类包含作为二叉树的生成算法.实验结果表明,该算法具有一定的优越性.  相似文献   

3.
支持向量机多类分类方法   总被引:30,自引:0,他引:30  
支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题。当前针对多类问题的支持向量机分类方法主要有5种:一类对余类法(OVR),一对一法(OVO),二叉树法(BT),纠错输出编码法和有向非循环图法。本文对这些方法进行了简单的介绍,通过对其原理和实现方法的分析,从速度和精度两方面对这些方法的优缺点进行了归纳和总结,给出了比较意见,并通过实验进行了验证,最后提出了一些改进建议。  相似文献   

4.
支持向量机在多类分类问题中的推广   总被引:51,自引:4,他引:51  
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。  相似文献   

5.
张苗  张德贤 《微机发展》2008,18(3):139-141
文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一。传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较。提出了多类支持向量机文本分类中存在的问题和今后的发展。  相似文献   

6.
传统的支持向量机(SVM)是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。本文在对现有主要的四种多类支持向量机分类算法讨论的基础上,结合文本分类的特点,详细介绍了决策树支持向量机和几种改进多类支持向量机方法在文本分类中的应用。  相似文献   

7.
快速的支持向量机多类分类研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了支持向量机多类算法DAGSVM(Direct Acyclic Graph SVM)的速度优势,提出了结合DAGSVM和简化支持向量技术的一种快速支持向量机多类分类方法。该方法一方面减少了一次分类所需的两类支持向量机的数量,另一方面减少了支持向量的数量。实验采用UCI和Statlog数据库的多类数据,并和四种多类方法进行比较,结果表明该方法能有效地加快分类速度。  相似文献   

8.
支持向量机解决多分类问题研究   总被引:24,自引:0,他引:24  
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。但在解决实际问题中遇到的多为多分类问题,通过研究现有提出的一些支持向量机多分类的方法,并进行分析比较,在一对一分类方法基础上提出具有容噪声的分类方法,通过标准数据集实验加以验证。  相似文献   

9.
提出了一种快速的支持向量机多类分类算法.首先用每类训练样本的样本数作为权值构造最优二叉树,然后对每个非叶子结点训练两类分类器.分类时,从二叉树根结点开始逐层向下分类,直到某一叶子结点,该结点对应的类别即为待分类样本的类别.在Reuters 21578标准数据集上进行的分类实验表明,该算法具有较好的性能,在一定程度上克服了现有的支持向量机多类分类算法分类速度较慢的缺点,尤其在类别数较多、各类样本规模相同的情况下,采用该算法能够较大幅度地提高分类速度.  相似文献   

10.
支持向量机多类分类算法新研究   总被引:1,自引:1,他引:1  
支持向量机最初是针对两类分类问题提出的,如何将其推广至多类分类问题是当前SVM研究中的热点问题之一。主要针对支持向量机多类分类方法中的分解重构法进行了深入分析,详细讨论了影响分类器性能的两个关键因素:分解策略和组合策略,并通过实验验证了该观点。最后,通过实验对比了包括M-ary 支持向量机和模糊支持向量机的SVM多类分类方法。  相似文献   

11.
模糊多类支持向量机及其在入侵检测中的应用   总被引:29,自引:0,他引:29  
针对支持向量机理论中现存的问题:多类分类问题和对于噪音数据的敏感性,提出了一种模糊多类支持向量机算法.该算法是在Weston等人提出的多类SVM分类器的直接构造方法中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成员函数得到相应的值,由此可以得到不同的惩罚值,并且在构造分类超平面时,可以忽略那些对分类结果影响很小的数据.在充分的数值实验基础上,将文中提出的方法应用于当前一个重要的应用领域——计算机网络入侵检测问题,并得到了较好的实验结果.理论分析与数值实验都表明,该算法是切实可行的,并具有良好的鲁棒性。  相似文献   

12.
杨斌  路游 《微机发展》2006,16(11):56-58
支持向量机是一种新型机器学习方法,由于其出色的学习性能,该技术已成为机器学习领域新的研究热点。介绍用于分类的支持向量机的统计学习理论基础,在此基础上提出了支持向量机的分类算法,讨论了支持向量机存在的问题,对用于分类的支持向量机的应用前景进行了展望。  相似文献   

13.
神经网络集成和支持向量机都是在机器学习领域很流行的方法。集成方法成功地提高了神经网络的稳健性和精度,其中选择性集成方法通过算法选择差异度大的个体,取得了很好的效果。而支持向量机更是克服了神经网络的局部最优,不稳定等缺点,也在多个方面取得了很好的结果。该文着重研究这两种方法在小样本多类数据集上的性能,在四个真实数据集上的结果表明,支持向量机性能要比神经网络集成稍好.  相似文献   

14.
改进的超球支持向量机算法   总被引:1,自引:0,他引:1       下载免费PDF全文
超球支持向量机算法用于解决多类别数据的分类问题。对超球重叠区域的数据正确分类对球结构支持向量机的分类性能至关重要。在分析这些样本点特点的基础上,提出了一种新的分类规则,使超球支持向量机算法的泛化性能高于现有的算法。实验结果表明该算法有效可行,提高了最小包围球分类器的分类精度。  相似文献   

15.
支持向量机与证据理论在信息融合中的结合   总被引:7,自引:0,他引:7  
在多传感器信息融合中,DS证据理论是一种重要方法,但是它的基石基本概率分配(BPA)一般不易确定,从而使它的优势难以得到发挥。支持向量机(SVM)是建立在统计学习理论之上的一种新型学习算法,但SVM的硬判决输出却不便于进行多传感器信息融合。为便于信息融合,本文提出了一种具有BPA输出的二类SVM,通过分析Platt概率输出模型的实质与不足提出利用SVM精度下限对其进行加权处理来得到证据理论的BPA方法,实现了SVM与DS证据理论在信息融合中的结合。仿真结果表明通过本文方法可以实现多传感器的信息融合并大大降低了融合识别的误差率。  相似文献   

16.
如今图书管理机构通常依据"书籍量"、"费用比例"等指标构建体系并完成分类,这是最传统的分类模型,特点是重点管理高价值图书,非重点管理一般图书.虽然简单实用,但是传统模型过于简单,对于现实运营中的图书重要度、采买时间、供应水平等指标不能科学全面反应,导致分类比较粗糙.论文通过创新性地将支持向量机的分类原理应用到图书的AB...  相似文献   

17.
音乐分类研究已经持续多年,但目前检索效率并不理想. 提出了一种基于熵和支持向量机的音乐分类方法. 利用滤波器把音乐片段分解成不同的频率通道,然后通过离散傅里叶变换转换为频谱图后计算信息熵,并使用支持向量机在四个类别的音乐集上进行训练和测试. 同时,比较了三种不同的滤波器,其中Bark滤波取得了80%的识别率,实验结果表明其比使用MFCC特征分类效果要好.  相似文献   

18.
研究提出了新的玻璃制品智能检测系统和算法;根据玻璃制品检测的需要,设计了一个机器视觉检测系统,并开发了实验样机;在获取玻璃制品图像后,根据缺陷的特点来分割出可能缺陷区域,然后在可能缺陷区域内提取缺陷特征;提出采用一种多核函数支持向量机集成方法来对特征进行分类;此多核函数支持向量机集成采用遗传算法来协同优化集成中支持向量机的各项参数,使得各支持向量机在拥有较高分类性能的同时保持差异性;而在最后集成各支持向量机时采用了遗传选择集成方法;实验表明采用文中提出的检测算法在实验样机上检测玻璃制品质量,准确率可达97%以上.  相似文献   

19.
支持向量机是现代人工智能领域中的一个重要分支,它在统计学习理论的基础上,实现了结构风险最小化,提高了分类器的泛化能力,保证了分类的准确度。论文提出一种基于多分类支持向量机的模式识别方法,采用特征选择序列极小化算法对数据样本特征进行选择,并在此基础上,分析对比了“一对一”分类算法和“一对多”分类算法,实验结果表明,“一对一”分类算法的分类准确性较高,且具有较好的推广能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号