首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sorghum variety was supplied as commercial malt and as an unmalted cereal by a maltster. The commercial sample had been malted in a tropical country. Sub‐samples of the unmalted cereal were malted in the laboratory under controlled germination temperatures of 28°C and 30°C. Laboratory and commercially malted sorghum were studied for their brewing qualities. The α‐amylase development in sorghum malt was enhanced when germination was carried out at the higher temperature of 30°C rather than at 28°C. Hot water extract (HWE) was more variable. With infusion mashing, results showed a significant difference for germination time (3–6 days), but no significant difference relating to germination temperature. With the decantation mashing method the reverse was observed. The low numerical values of HWE obtained from sorghum malt in the infusion mashing process confirmed that this process is not suitable to produce optimal extract development from malted sorghum. The 28°C germinated sorghum released more FAN products into the worts than the 30°C malt, using both the infusion and decantation methods. With regard to the parameters tested, commercially malted sorghum gave lower analytical values than laboratory malted sorghum. It was also observed that variations in malting temperatures and mashing processes can cause unexpected variations in the analyses of sorghum malt. These findings suggest that careful process control is required during the malting and mashing of sorghum.  相似文献   

2.
Peroxidase activity was demonstrated in dry and germinating sorghum seeds. The specific activity increased about 14-fold during malting for a 96-hour period. On the average about 41% of peroxidase activity was located in the endosperm, and the remaining 56% in the acrospire and rootlet of sorghum malt. The crude enzyme extract retained 77%, 17.5% and 7.6% of activity after heating at 60°, 70° and 80°C, respectively. More than 50% of the peroxidase activity in the finished malt survived mashing at 65°C. Optimum activity was recorded at pH 5.5 which falls within the observed pH range of sorghum worts. The level of residual peroxidase activity in the wort differed with sorghum species.  相似文献   

3.
Sorghum malt α-glucosidase activity was highest at pH 3.75 while that of barley malt was highest at pH 4.6. At pH 5.4 employed in mashing sorghum malt α-glucosidase was more active than the corresponding enzyme of barley malt. α-Glucosidase was partly extracted in water but was readily extracted when L-cysteine was included in the extraction buffer, pH 8. Sorghum malt made at 30°C had higher α-glucosidase activities than the corresponding malts made at 20°C and 25°C. Nevertheless, the sorghum malts made at 20°C and 25°C produced worts which contained more glucose than worts of malt made at 30°C. Although barley malts contained more α-glucosidase activity than sorghum malts, the worts of barley had the lowest levels of glucose. The limitation to maltose production in sorghum worts, produced at 65°C, is due to inadequate gelatinization of starch and not to limitation to β-amylase and α-amylase activities. Gelatinization of the starch granules of sorghum malt in the decantation mashing procedure resulted in the production of sorghum worts which contained high levels of maltose, especially when sorghum malt was produced at 30°C. Although the β-amylase and α-amylase levels of barley malt was significantly higher than those of sorghum malted optimally at 30°C, sorghum worts contained higher levels of glucose and equivalent levels of maltose to those of barley malt. It would appear that the individual activities of α-glucosidase, α-amylase and β-amylase of sorghum malts or barley malts do not correlate with the sugar profile of the corresponding worts. In consequence, specifications for enzymes such as α-amylase and β-amylase in malt is best set at a range of values rather than as single values.  相似文献   

4.
Proso millet is a gluten‐free cereal and is therefore considered a suitable raw material for the manufacturing of foods and beverages for people suffering from celiac disease. The objective of this study was to develop an optimal mashing procedure for 100% proso millet malt with a specific emphasis on high amylolytic activity. Therefore, the influence of temperature and pH on the amylolytic enzyme activity during mashing was investigated. Size exclusion chromatography was used to extract different amylolytic enzyme fractions from proso millet malt. These enzymes were added into a pH‐adjusted, cold water extract of proso millet malt and an isothermal mashing procedure was applied. The temperatures and pH optima for amylolytic enzyme activities were determined. The α‐amylase enzyme showed highest activity at a temperature of 60°C and at pH 5.0, whereas the β‐amylase activity was optimum at 40°C and pH 5.3. The limit dextrinase enzyme reached maximum activity at 50°C and pH 5.3. In the subsequent mashing regimen, the mash was separated and 40% was held for 10 min at 68°C to achieve gelatinisation. The next step in the mashing procedure was the mixture of the part mashes. The combined mash was then subjected to an infusion mashing regimen, taking the temperature optima of the various amylolytic enzymes into account. It was possible to obtain full saccharification of the wort with this mashing regimen. The analytical data obtained with the optimised proso millet mash were comparable to barley wort, which served as a control.  相似文献   

5.
The objective of this study was to develop a temperature programmed mashing profile for 100% buckwheat malt. Both standard brewing methods and a rheological tool (Rapid Visco Analyser) were used to characterise worts and mashes. An optimal grist: liquor ratio of 1:4 was observed. At this ratio, buckwheat malt showed a gelatinisation temperature of 67°C and barley malt 62°C. A one hour stand at 65°C exhibited higher FAN levels, fermentable extracts and lower viscosity values than stands at 67°C or 69°C, and was therefore used in further mashing trials. An extra mashing step of 30 min, at any of the tested temperatures, increased extract values a minimum of 4%, decreased viscosities a minimum of 0.20 mPas, and increased fermentable extracts 12%. Best results were obtained when a mashing‐in temperature was used in the range of 35°C to 45°C. These mashing‐in temperatures were used to design an optimal mashing procedure: 15 min at 35°C; 15 min at 45°C; 40 min at 65°C; 30 min at 72°C; 10 min at 78°C. This program showed higher extract values and fermentable extract values (72.7% and 49.9%) than obtained by congress mashing (65.3% and 40.0%), thus successfully optimising the mashing program.  相似文献   

6.
Formation of extracts and fermentable sugars during mashing can be limited by incomplete starch gelatinisation. The aim of this research was to develop mashing programme for 100% teff malt as a potential raw material for gluten‐free lactic acid‐fermented beverage. Isothermal mashing at temperatures ranging between 60 and 84 °C was conducted, and the highest extract (85%) was observed for the wort samples produced at temperatures higher than 76 °C. Sixty‐minute rest at 71 °C resulted in higher fermentable sugars than other tested conversion rest temperatures. Inclusion of lower mashing‐in temperature in the mashing programme also substantially improved the concentrations of free amino nitrogen (128 mg L?1) and fermentable sugar (58 g L?1) in the final wort. Therefore, 30‐min rest at 40 °C followed by 60‐min rest at 71 °C and 10‐min rest at 78 °C was found to be a suitable mashing programme for teff malt.  相似文献   

7.
8.
Lipase activity was monitored during malting and mashing of sorghum grains. All three sorghum varieties contained detectable lipase activity in the ungerminated form. Lipase activity changed only slightly during steeping for 24 hours but increased several fold in the course of germination. Between 24% and 60% of the lipase activity of the green malt was retained after kilning at 48°C but no activity was detected in the wort after mashing at 65°C. About 68% of the lipase activity of 72 hours old malt was detected in the plumule, while 29% and 3% were detected in the endosperm and radicle, respectively. Optimum activity was observed at pH 7.0.  相似文献   

9.
Free α-amino nitrogen (FAN) is an essential nutrient for yeast growth during fermentation. Under normal conditions of sorghum beer mashing, 60°C at pH 4.0, production of FAN by proteolysis accounts for approximately 30% of wort FAN, the remaining 70% being preformed in the malt and adjunct. The quality of the FAN in sorghum beer worts is good as it does not contain a high percentage of proline. Optimum conditions for FAN production during mashing are 51°C and pH 4.6. Wort FAN was increased proportionally by raising the ratio of sorghum malt to adjunct and conversely decreased by raising the ratio of adjunct to malt. FAN was also increased by the addition to the mash of a microbial proteolytic enzyme. Wort FAN is directly proportional to malt FAN.  相似文献   

10.
Hydrolysis of breadfruit flour by acid and enzymes of sorghum malt were investigated. Mash (malt to breadfruit flour) ratios of 2: 3 and 1: 1 were used. The optimum mashing profile of 20 minutes at 64°C followed by 30 minutes at 72°C was established. The addition of an exogenous enzyme improved the wort properties. Kinetic study of the enzymatic hydrolysis revealed non‐adherence with either the simple Michaelis‐Menten Kinetics or one with product inhibition. Anaerobic fermentation of the hydrolysate by Sacchammyces cerevisiae at pH 4.7 and temperature of 30°C, was carried out with and without mineral and nitrogen sources supplementation of the wort. The results showed that the enzymes in sorghum malt could be used, with some external enzyme supplementation, to hydrolyse breadfruit starch to yield appreciable amounts of sugar which may be used as food sweetener, substrate for single cell protein production, and in the production of beverages. This is particularly relevant to operations in developing countries.  相似文献   

11.
Different time and temperature programmes were used to evaluate the production of hot water extract (HWE) and free amino nitrogen (FAN) from mashes containing raw sorghum and either malted sorghum or malted barley in the presence of microbial enzymes. Two malted varieties of sorghum (SK 5912 and Zaria) were used. The former gave higher HWE but lower FAN than the latter. Sorghum malts were unable to provide enzyme activity for starch extraction and exogenous enzymes were always needed. Seventeen commercially available enzyme preparations were assessed. A double-mash process was developed. Inclusion of calcium ions (200 ppm) was beneficial but adjustment of mash pH had little effect. Raw sorghum was gelatinised at 100°C for 30–40 min in the presence of a heat-stable α-amylase followed by mixing with a malt mash (started at B0°C) to give a temperature of 65°C with a total mash time of 167 min (127 min from mixing the mashes). The inclusion of a single commercial enzyme preparation (containing both proteolytic and amylolytic activities) was sufficient to achieve satisfactory HWE and FAN. Addition of different activities or combinations of activities gave no significant advantages. To obtain levels of FAN of 100–140 mg/l however excessive amounts of enzymes were required.  相似文献   

12.
Small scale mashes (50 g total grist) with grists containing up to 50% by weight of extruded whole sorghum produced worts of high extract yield and low viscosity. Increasing the proportion of extruded sorghum in the grist resulted in decreasing wort filtration volume, total nitrogen and free amino nitrogen content. The wort filtration behaviour of mashes containing sorghum extruded at 175°C was superior to that of mashes containing sorghum extruded at 165°C or 185°C. The results from such small scale mashing experiments suggested that extruded sorghum compared favourably to extruded barley and extruded wheat as a brewing adjunct. Worts and beers were produced on a pilot brewery scale (100 1) from grists comprising 70% malt + 30% extruded sorghum and 100% malt under isothermal infusion mashing conditions. Mashes containing sorghum extruded at 175°C showed comparable wort filtration behaviour to that of the all malt control mash whereas mashes containing sorghum extruded at 165°C or 185°C showed poor wort filtration behaviour. Worts produced from grists containing extruded sorghum fermented more quickly than the control wort and attained lower values of final gravity. The resulting beers were filtered without difficulty. Beers produced from grists containing extruded sorghum contained lower levels of total nitrogen and free amino nitrogen compared to the control beer consistent with extruded sorghum contributing little or no nitrogenous material to the wort and beer. Beers brewed from grists containing extruded sorghum were of sound flavour and showed reasonable foam stability behaviour.  相似文献   

13.
The aim of this research was to investigate the relationship between starch composition in barley and its malted counterpart alongside malt enzyme activity and determine how these factors contribute to the fermentable sugar profile of wort. Two Australian malting barley varieties, Commander and Gairdner, were sourced from eight growing locations alongside a commercial sample of each. For barley and malt, total starch and gelatinisation temperature were taken, and for malt, α‐ and β‐amylase activities were measured. Samples were mashed using two mashing profiles (infusion and Congress) and the subsequent wort sugar composition and other quality measures (colour, original gravity, soluble nitrogen) were tested. Variety had no significant (<0.05) effect on any barley, malt, enzyme or wort characteristics. However, growing location impacted gelatinisation temperature, colour, malt protein content and original gravity. The gelatinisation temperature in malt samples was higher, by ~0.8°C, than in the equivalent barley sample. Several malt samples, even with protein contents <12.0%, had gelatinisation temperature >65°C. The fermentable sugars measured in the malt prior to mashing showed a higher proportion of maltose than glucose or maltotriose. In addition, there were significant differences in the amount of sugar produced by each mashing method with the high temperature infusion producing a higher amount of sugar and proportionally more maltose. There is scope for further research on the effect of genetics and growing environment on gelatinisation temperature, mash performance and fermentable sugar development. Routinely measuring gelatinisation temperature and providing this information on malt specification sheets could help brewers optimise performance. © 2019 The Institute of Brewing & Distilling  相似文献   

14.
Treatment of mixed grists of malt and either barley flakes or barley flour with β-glucanase during infusion mashing at 65°C improves both the rate of run-off of wort and the total yield of extract. The total amount of non-starchy polysaccharide in solution is increased but the high molecular weight β-glucan fraction is decreased by the addition of β-glucanase. An improvement in wort separation is associated with a lowering of wort viscosity but it is concluded that the major factor influencing wort separation is the structure of the mash bed and the presence of inert material to which protein, glucan and pentosans can bind. A micro-mashing unit is described which simulates the problems of wort separation encountered with certain grists in deep infusion mash tuns.  相似文献   

15.
To determine the most suitable types of sorghum for whole‐grain adjunct in lager beer brewing, 14 cultivars of five different types: white tan‐plant, white non‐tan‐plant, red non‐tannin, white tannin (type II) and red tannin (type III) were evaluated. The effects of grain type on wort physico‐chemical and sensory quality with raw grain and malt plus commercial enzyme mashing were assessed. Tannin content correlated significantly and negatively with wort extract and fermentable sugars (p < 0.001) and free amino nitrogen (FAN; p < 0.1). This is attributable to inactivation of the exogenous enzymes by the tannins during the mashing process. However, the type II tannin sorghums had wort quality attributes closer to the non‐tannin sorghum types, probably owing to their relatively low tannin content (≤1%). Malting gave a great improvement in wort extract, fermentable sugars and FAN, but substantially influenced wort sensory properties in terms of higher sourness, bitterness and astringency, as well as the expected more malty flavour. Worts from raw red non‐tannin sorghums were similar to those of white tan‐plant sorghums in both physico‐chemical and sensory quality. Thus, red non‐tannin sorghums, in view of their better agronomic quality, have considerable potential as a whole‐grain adjunct in lager beer brewing. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

16.
Enzymic breakdown of endosperm proteins of sorghum was more effective at 20°C than at 25°C and 30°C, as regards total protein solubilization, α-amino nitrogen and peptide production. Although the embryos (axes and scutella), of the three temperature treatments contained similar quantities of protein, it appeared that less proteins, in terms of amino acids and peptides, were transferred to the roots during malting at 30°C than at 25°C and 20°C. During mashing, higher levels of peptides but lower levels of α-amino nitrogen and total soluble nitrogen were released in an infusion mash at 65°C than in a decantation mash where enzymically active wort was decanted and used to mash gelatinized sorghum starch at 65°C. Although more of the maltose-producing enzyme—β—amylase was found in sorghum malts made at 25°C and 30°C than at 20°C, it would seem that, for sorghum, malting temperature of 20°C to 25°C were optimal as regards protein breakdown during malting. The protein breakdown produced when sorghum is malted at 20°C is comparable to that found in barley malt and should support similar levels of adjuncts and yeast growth during brewing.  相似文献   

17.
Four sorghum varieties (SK 5912, KSV 4, KSV 8, ICSV 400) were malted and extracted under similar conditions to assess their quality for brewing. The results showed that, in general, the sorghum varieties had high malting loss which was attributed to the high germination temperature used. The sorghum varieties also developed low levels of amylolytic activity (α‐amylase and β‐amylase), and with similar ratios. When the sorghum malts were mashed at different temperatures with the aid of commercial enzyme preparations, it was observed that mashing temperatures were more important in sugar release than additions of commercial enzymes. This was because at the lower mashing temperature, sorghum starch was not adequately gelatinised. However, when commercial enzyme preparations were added, low levels of enzymes were very effective in reducing wort viscosity and producing free amino nitrogen (FAN). Although, both commercial enzyme preparation and mashing temperature influenced sugar production, the malts produced glucose and maltose at similar ratios. Therefore good quality malts can be produced from sorghum, however mashing will employ commercial enzymes and mashing regimes are not yet optimised.  相似文献   

18.
Pito is a traditional fermented beverage produced from malted sorghum or millet grains. Steeping is usually performed at 30°C. Limited information exists on the effect of temperature on the characteristics of the malted grains and the Pito. The aim of this work was to study the effect of varying the steeping temperature (30, 35 or 40°C) on the quality of malt and of the Pito brewed from Kadaga sorghum and to specifically determine the diastatic power, extract yield and attenuation limit of the malt. Total soluble solids, pH and alcohol content, as well as the sensory evaluation of the Pito brewed at both 40 and 30°C were assessed. Results from analysis showed that the 40°C malts had the highest diastatic power (88.1 SDU/g), extract yield (96.75% d.m.) and attenuation limit (78.95%). Pito produced from malt steeped at 40°C yielded a significantly higher alcohol content of 3.54 g/100 g, a total soluble solids of 4.34 and a pH of 3.57 and this Pito was preferred over the traditionally prepared Pito at the steeping temperature of 30°C. Therefore steeping sorghum at 40°C yields a quality malt and a quality Pito. This study should aid in the adoption of sorghum for brewing purposes. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

19.
The cause of the high glucose to maltose ratio in sorghum malt worts was studied. Mashing temperature and pH strongly affected both the amount of glucose and the proportion of glucose relative to total fermentable sugars. The relative proportion of glucose was higher when mashing was performed. at pH 4.0, close to the pH optimum for sorghum alpha-glucosidase, than at the natural pH of the mash (pH 6.0–5.5). Mashing according to the EBC procedure using an enzymic malt extract with pre-cooked malt insoluble solids producing a wort containing maltose and glucose in an approximately 4:1 ratio, whereas mashing with a malt extract without pre-cooking the malt insoluble solids resulted in a wort with approximately equal amounts of maltose and glucose. Both treatments gave the same quantity of total fermentable sugars and amount of wort extract. Sorghum alpha-glucosidase was confirmed to be highly insoluble in water. All or virtually all activity was associated with the insoluble solids. Hence, it appears that the high amount of glucose formed when sorghum malt is mashed conventionally is due to alpha-glucosidase activity. Pre-cooking the malt insoluble solids inactivates the alpha-glucosidase, preventing the hydrolysis of maltose to glucose.  相似文献   

20.
A purified extracellular ferulic acid esterase from Lactobacillus acidophilus K1 was successfully used during mashing for the release of free phenolic acids into sweet wort. The enzyme was produced in bioreactors and partially purified to obtain the monoenzyme preparation. Release of free ferulic and vanillic acid into the wort at 52°C (with the use of 4.09–14.60 enzyme activity units/L of the mash) and ferulic acid at 62°C (14.60 units/L) was observed. Free p‐OH‐benzoic and syringic acids were effectively released at 26°C at each enzyme concentration used. Free p‐OH‐benzoic acid was also released by the enzyme (14.60 U/L) at 52°C‐74°C. Free protocatechuic acid was effectively hydrolyzed by the enzyme preparation (8.75 U/L and 14.60 U/L) at 26°C‐52°C. Free caffeic acid (effectively released at 26°C‐62°C) originated from chlorogenic acid. No p‐coumaric acid was released due to the action of bacterial esterase during mashing. Ferulic acid esterase from L. acidophilus K1 exhibited no ability to release free phenolic acids during mashing at 62°C or at 74°C due to its low thermostability. In conclusion, L. acidophilus K1 is an attractive source for the production of ferulic acid esterase, which can be useful for the release of antioxidant phenolic acids in the early stages of mashing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号