首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcal protein A (SPA), HIV gp120, and staphylococcal enterotoxins (SE) are B cell superantigens that induce VH specific B cell responses. In addition, the red blood cell antigens, i/I, have some features of a B cell superantigen. Binding of SPA, SE and HIV gp120 are VH family specific, whereas binding of i/I is VH gene specific. SPA and HIV gp120 function by stimulating VH3-expressing B cells, whereas SE appear to function by enhancing survival of the appropriate VH-expressing B cells. Moreover, HIV gp120 has been shown to delete VH3-expressing B cells. In this review, we describe evidence that shows how these superantigens may play a role in shaping the normal B cell repertoire.  相似文献   

2.
HIV infection is characterized by accelerated apoptosis and progressive loss of B cells. To see whether these abnormalities are related to the property of gp120 to act as a superantigen for VH3(+) B cells, we probed the temporal development of VH3(+) antibodies in HIV-1-infected subjects over a 7-year period. We found that VH3(+) antibodies specific for the gp120 superantigen binding site are deficient. Since VH3(+) antibodies impart protective responses to infectious agents, we quantified VH3(+) antibodies in serum samples from HIV-seropositive slow progressors and from patients who progressed to AIDS-related manifestations. We found that paucity in VH3(+) antibodies is a marker of rapid clinical decline. Remarkably, anti-gp160 VH3(+) antibodies showed a gradual decrease in progressors and, with time, varied depending on the viral load. We conclude that disease aggravation is associated with a decrease of the magnitude of the humoral response, that VH3(+) antibodies play an important role in protection, and that their underexpression may accelerate disease progression. We propose that vaccine preparations able to trigger VH3(+) antibodies might confer a better protection against HIV infection. This work also represents a novel mechanism of humoral deficiency resulting from the capacity of a viral antigen to affect an important subset of the B cell repertoire and to induce B cell death by apoptosis.  相似文献   

3.
Studies by several groups have suggested that HIV infection in vivo results in a BV-specific alteration of the TCR repertoire and that this might play a role in the pathogenesis of AIDS. Our earlier studies demonstrated that both a crude extract of HIV451 as well as purified gp 160 from HIV451 could specifically activate, in vitro, T cells expressing a common set of TCRBV segments (TCRBV3, 12, 14, 15, and sometimes BV17 and 20) in individuals of disparate HLA type. Furthermore, purified gp120 from HIV451 was shown to have a similar ability to activate T cells, although with a slightly different TCRBV-specific pattern. In order to determine whether gp120 from other HIV strains could similarly activate T cells in a TCRBV-specific pattern, PBMC from HIV seronegative individuals of disparate HLA type were stimulated with gp120 from three strains of HIV (451, IIIB, and MN). The authors found that gp120 from all three strains activate T cells bearing TCRBV2 and BV3 in nearly every individual. T cells expressing other BV segments are also activated, but this is more variable and appears to be unique to each individual. Furthermore, gp120(451) and gp120 from HIVIIIB and HIVMN differ in their ability to activate T cells expressing these other TCRBV segments. These observations suggest that variation in the structure of gp120 and in the genetic and/or environmental background of the individual play an important role in determining which TCRBV segments are 'triggered' by gp120. Furthermore, these observations may have important implications for the rate of disease progression in HIV-infected individuals.  相似文献   

4.
It has been suggested that loss of uninfected T cells in HIV infection occurs because of lymphocyte activation resulting in cell death by apoptosis. To address the question of whether cross-linking of CD4/HIV gp120 complexes by antibodies were sufficient to induce T cell depletion in vivo, we developed an animal model of continuous interaction between human CD4 (hCD4), gp120 and anti-gp120 antibodies in the absence of other viral factors. Double-transgenic mice have been generated in which T cells express on their membrane hCD4 and secrete HIV gp120. Although these mice have hCD4/gp120 complexes present on the surface of T cells, they do not show gross immunological abnormalities, and they are able to produce anti-gp120 antibodies following immunization with denaturated gp120. However, double-transgenic mice with antibodies to gp120, when immunized with tetanus toxoid, mount an IgG response that is significantly lower than that of double-transgenic mice without antibodies to gp120. Furthermore, the presence of anti-gp120 antibodies leads to CD4+ T cell depletion and immunodeficiency in the absence of HIV infection. Thus, the antibody response to gp120 can lead to CD4+ T cell attrition in vivo.  相似文献   

5.
Binding of the HIV envelope glycoprotein gp120 to CD4 inhibits T cell activation. We have used a murine T cell clone transfected with either wild-type human CD4 or mutated forms of CD4 to characterize the pathways involved in this inhibitory effect of gp120. Ag-induced proliferation of T cell clones transfected with human CD4 was completely inhibited in the presence of gp120, even though stimulation of this clone is independent of a CD4/MHC class II interaction. In addition, our results demonstrate that the inhibition by gp120 is not due to the sequestration of lck from TCR and does not require activation of lck by gp120. This suggests that CD4 can regulate the initiation of T cell activation independently of its interaction with lck. Moreover, we demonstrate that the nonresponsiveness induced by gp120 can be reversed by soluble CD4 when added early after onset of stimulation and that gp120 exerts its inhibitory effect when cells are in the G0 > or = 1 phase of the cell cycle.  相似文献   

6.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

7.
The aim of this study was to assess whether the HIV protein gp120 can induce direct or/and indirect damage to oligodendrocytes (OL). Using highly purified cultures of rat OL, we report that gp120 binds to OL and induces functional alterations in these cells. Indeed, the percentage of cells expressing myelin basic protein (MBP) and the levels of all four MBP isoforms were substantially reduced after a 3-day treatment with 10 nM gp120. As gp120 depressed the ability of OL to reduce the tetrazolium salt MTT (a sign of mitochondrial impairment), the alteration of MBP production may be a consequence of decreased metabolic activity. The above effects were accompanied by a small increase in the number of apoptotic nuclei (from 4.3% in controls to 17.6% in cells treated for 3 days with gp120). As complement can lyse OL and gp120 is known to activate complement, we also studied the interaction between these two factors using OL cultures. The viral protein potentiated (by about 25%) the lytic effect of complement, when administered to the cultures 5 hr after complement, and depressed it (by about 30-40%), when added 5 hr before complement. Heat denaturation and anti-gp120 antibodies prevented the direct effect of gp120 on OL, but did not influence the interactions between gp120 and complement. Some gp120 non glycosylated peptides (V3 loop, 254-274 and 415-435 peptides) mimicked the ability of gp120 to antagonize the lytic effect of complement, but not that of potentiating complement lytic activity. In conclusion, our study indicates that gp120 can alter OL functional activity directly and can interfere with OL susceptibility to complement mediated lysis.  相似文献   

8.
CD4 molecules are the primary receptors for human immunodeficiency virus (HIV) and bind the envelope glycoprotein gp120 of HIV with high-affinity. We have previously shown that cross-linking of CD4 molecules (CD4XL) in normal peripheral blood mononuclear cells (PBMC) results in secretion of cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), but not of interleukin-2 (IL-2) or IL-4. To investigate the intracellular signaling events associated with CD4-gp120 interaction, we incubated CD4+ T cells from peripheral blood of HIV-negative healthy donors with HIV envelope protein gp160 alone or performed CD4XL with gp160 and anti-gp160 antibody. This procedure resulted in tyrosine phosphorylation of intracellular substrates p59fyn, zap 70, and p95vav and also led to ras activation, as assessed by conversion of rasGDP to rasGTP. The role of ras in CD4 signaling was further investigated using CD4+ Jurkat cells transfected with a dominant negative ras mutant. CD4+ T cells expressing dn-ras secreted significantly reduced levels of TNF-alpha in response to CD4XL. These studies indicate that interaction of HIV gp160 with CD4 molecules activates the ras pathway in T cells, which may result in the cells becoming unresponsive to subsequent stimulation.  相似文献   

9.
Dysfunction of cytokine secretion pattern has been suggested to play a central role in the immunopathogenesis of HIV infection. In fact a shift of T helper cell functions from a Th1-type to TH0- or TH2-type has been observed in HIV-1 infected subjects undergoing disease progression. The inhalance of cytokine network is accompanied by persistent activation of the immune system, impaired ability to mount a proper activation response (anergy), and priming to apoptosis. Extensive investigation during the last decade has been conducted on the influence of HIV-1 gp120 or of its precursor gp160 on several lymphocyte and monocyte functions. Gp120 is able to rise intracellular calcium concentration and to induce the formation of inositol triphosphate, can block mitogen- or antigen-driven T cell activation, can induce altered cytokine production by activated PBMC subpopulations, determines impaired cytotoxicity and chemotactic response to antigens, interferes with the activity of antigen presenting cells, enhances or induces apoptosis, stimulates polyclonal B cell activation and induces or up-modulates a number of cytokines, including IL-6. TNF, IL-1-alpha and -beta, IL-10 and IL-8. Furthermore, both IFN-alpha and -gamma, as well as several markers of IFN activity, such as beta 2-microglobulin and neopterin, are induced in gp120-stimulated PBMC. However, neither IL-4 (Th2-type) nor IL-2 (Th1-type), nor DNA synthesis are activated by gp120. On the other hand gp120-stimulated PBMC express increased IL-2 receptors, and can be induced by exogenous IL-2 to proliferate, suggesting that they are in a state of at least partial activation. According to this hypothesis, other activation markers, both early (such as CD69), and late (such as CD45RO and CD71), are induced by gp120, but this even partial activation does not lead to the ability of PBMC to support productive infection by HIV-1, unless in the presence of exogenous IL-2. The HIV-induced cytokines can influence HIV infection either directly, by up- or down-modulating virus replication, or indirectly, by modulating the expression of cellular molecules. In fact, during the budding process, the HIV envelope captures a number of cell membrane proteins, including cytokine receptors such as IL-2R, adhesion molecules such as LFA-1, ICAM-1, -2, HLA Class I and II, as well as cell lineage markers. Gp120-induced cytokines, particularly IFN-gamma, upmodulate the cellular expression of intercellular adhesion molecules, such as ICAM-1. We have shown that the IFN-gamma-driven increase of the expression of ICAM-1 by cells chronically infected with HIV-1 can be transmitted to the virus progeny, resulting in phenotypic alteration of the virus, and leading to the expansion of its host cell spectrum to CD4-negative cells expressing the appropriate ligands, i.e. LFA-1. Intercellular adhesion molecules are also involved in the cell-mediated transmission of HIV infection, and the increased ICAM-1 expression induced by IFN-gamma determines a stimulation of the transmission of HIV from abortively infected endothelial cells to permissive CD4 lymphocytes. On the whole, these data indicate that HIV, or its soluble products such as gp120, can modify several PBMC functions, by inducing a number of cytokines and a partial state of immune activation. It is possible that the gp120-driven changes of PBMC functions are not only an epiphenomenon of HIV infection, but rather, it is likely that they can participate in the immunopathological events responsible for disease progression.  相似文献   

10.
Chimeric T cell receptors (cTCR) with an antibody specificity have been proposed in several models as a combination of antibody and cellular immunotherapy without MHC restriction. Such a tool could be of a limited use in HIV infection because of the great variability of the virus. The human single-chain antibody (ScFv-b12) derives from the b12 antibody directed to the CD4 binding site of gp120, a potent neutralizer of different HIV-1 strains, including a large panel of primary isolates. A single-chain fragment variable (ScFv) bearing the VH Pro-->Glu mutation that improves b12 affinity 54-fold, called ScFv-b12E, was also constructed. The ScFv were linked to the signal-transducing y chain of the Fc(gamma)RIII, with or without spacer region, and expressed in the murine MD45 T cell line. The different cTCR formats behave similarly in terms of ScFv surface expression, but differ according to their activation threshold. T cell transfectants can be stimulated with immobilized gp120 derived from all HIV strains tested. BHK cells infected with Semliki forest virus (SFV) carrying an HIV-1 envelope gene (SFV-env) derived from either HIV-1 laboratory strains (LAI, MN12, HXB2) or field isolates (BX08, CHAR or 133) were used as targets for the transfectants. All gp120-expressing cells induced cTCR-specific activation. The latter result is contrasting with the lack of specific recognition of SFV-CHAR- or 133-infected cells by the native b12 antibody, as measured by cytofluorometric analysis. Finally, HeLa cells (which constitutively express the coreceptor CXCR4) are able to bind HIV-1 gp160 when transfected with the chimeric receptor ScFv-b12-gamma, but, importantly, do not become infected by the virus. Our results therefore suggest that cTCR with b12 specificity can confer to T cells broad anti-HIV reactivity without making them susceptible to HIV infection.  相似文献   

11.
12.
In early HIV disease, immunodeficiency is characterized by the inability of CD4+ T cells to produce a critical cytokine, IL-2, and to express the receptor for IL-2 (IL-2R) in response to antigenic or mitogenic stimulation. The shared common gamma-chain (gamma(c)) of IL-2R and its associated Janus kinase, JAK3, are indispensable for normal T cell function. Here, we show that the inhibition of IL-2R expression and proliferation induced by ligation of CD4 by HIV envelope glycoprotein, gp120, is correlated with inhibition of expression and activation of JAK3. Stimulation through the gamma(c)-related cytokine receptors restores JAK3 expression and activation and rescues CD4-mediated T cell unresponsiveness. Collectively, these data argue that inhibition of JAK3 expression and activation may, in part, explain the T cell dysfunction seen in early HIV disease. In addition, rescue from gp120-mediated T cell unresponsiveness by activation of JAK3 suggests a novel therapeutic approach for enhancing immune function in HIV disease.  相似文献   

13.
The binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120, to its cell surface receptor, CD4, represents a molecular interaction involving distinct alterations in protein structure. Consequently, the pattern of epitopes presented on the gp120-CD4 complex should differ from those on free gp120. To investigate this concept, mice were immunized with covalently crosslinked complexes of viral HIV-1IIIBgp120 and soluble CD4. Two monoclonal antibodies (MoAbs) obtained from the immunized mice exhibited a novel epitope specificity. The MoAbs were marginally reactive with HIV-1IIIBgp120, highly reactive with gp120-CD4 complexes, and unreactive with soluble CD4. The same pattern of reactivity was seen in solid-phase assays using HIV-1(451)gp120. A similar specificity for complexes was evident in flow cytometry experiments, in which MoAb reactivity was dependent upon the attachment of gp120 to CD4-positive cells. In addition, MoAb reactivity was detected upon the interaction of CD4 receptors with purified HIV-1IIIB virions. Notably, seroantibodies from HIV-positive individuals competed for MoAb binding, indicating that the epitope is immunogenic in humans. The results demonstrated that crosslinked gp120-CD4 complexes elicit antibodies to cryptic gp120 epitopes that are exposed during infection in response to receptor binding. These findings may have important implications for the consideration of HIV envelope-receptor complexes as targets for virus neutralization.  相似文献   

14.
Cell-free human immunodeficiency virus type 1 (HIV-1) can be taken up and released by a monolayer of primary human gingival cells and remain infectious for CD4+ cells. Virus-sized latex particles covalently coated with purified native HIV-1 envelope glycoprotein gp120 are also transported through the primary epithelial cells. This process is significantly stimulated by increasing the intracellular cyclic AMP (cAMP) concentration. Inhibition experiments with mannan and alpha-methyl-mannopyranoside indicated that mannosyl groups are involved in the interaction between gp120 and gingival cells. An increase of cellular oligomannosyl receptors by incubation with the mannosidase inhibitor deoxymannojirimycin augmented transcellular transport of the gp120-coated particles. The results suggest that infectious HIV can penetrate gingival epithelia by a cAMP-dependent transport mechanism involving interaction of the lectin-like domain of gp120 and mannosyl residues on glycoproteins on the mucosal surface. Penetration of HIV could be inhibited by soluble glycoconjugates present in oral mucins.  相似文献   

15.
Since HIV-1 infection results in severe immunosuppression, and the envelope protein gp120 has been reported to interact with some of the chemokine receptors on human T lymphocytes, we postulated that gp120 may also affect monocyte activation by a variety of chemokines. This study shows that human peripheral blood monocytes when preincubated with gp120 either purified from laboratory-adapted strains or as recombinant proteins exhibited markedly reduced binding, calcium mobilization, and chemotactic response to chemokines. The gp-120-pretreated monocytes also showed a decreased response to FMLP. This broad inhibition of monocyte activation by chemoattractants required interaction of gp120 with CD4, since the effect of gp120 was only observed in CD4+ monocytes and in HEK 293 cells only if cotransfected with both chemokine receptors and an intact CD4, but not a CD4 lacking its cytoplasmic domain. Anti-CD4 mAbs mimicked the effect of gp120, and both anti-CD4 Ab and gp120 caused internalization of CXCR4 in HEK 293 cells provided they also expressed CD4. Staurosporine blocked the inhibitory effect of gp120 on monocytes, suggesting that cellular signaling was required for gp120 to inhibit the response of CD4+ cells to chemoattractants. Our study demonstrates a broad suppressive effect of gp120 on monocyte activation by chemoattractants through the down-regulation of cell surface receptors. Thus, gp120 may be used by HIV-1 to disarm the monocyte response to inflammatory stimulation.  相似文献   

16.
17.
Previous studies showed that the gp120 envelope protein of HIV-1 is able to crosslink membrane IgM on normal human B cells and to induce their activation in a V(H)3 immunoglobulin gene-family-specific manner. Because this V(H) gene family is the largest in the human repertoire, this superantigen (SAg) property is thought to have deleterious consequences for the host, including a progressive decline of B cells with progression of the HIV-1-induced disease. Here, we have identified the sequence motifs on gp120 involved in SAg binding to normal Igs. We show that this SAg-binding activity is present in gp120s from highly divergent isolates of HIV-1 belonging to clades derived from various geographical origins, and that carbohydrate residues are not essential for its expression. The SAg-binding site is formed by protein sequences from two regions of the gp120 molecule. The core motif is a discontinuous epitope spanning the V4 variable domain and the amino-terminal region flanking the C4 constant domain. The most critical residues appear to be Leu395-Asp397 and Ile425-Gln427. Residues from the C2 constant domain (positions 252-272) also seem to play an accessory role in SAg binding of gp120 to normal human Igs. These findings are important in the design of a successful gp120-based vaccine against HIV-1.  相似文献   

18.
CD4 ligation of HIV envelope gp120 results in conformational changes in gp120 that lead to exposure of the gp41 fusogenic domain and fusion with the host cell membrane. One determinant at or near the CD4-binding site exposed on gp120 subsequent to CD4 binding is defined by two human MAbs termed 17b and 48d. These MAbs do not block CD4 binding to gp120; rather, their binding to gp120 is upregulated following CD4 binding. To determine if synthetic peptide mimetopes could be found that reflect conformational determinants on the surface of gp120, synthetic gp120 peptides from 10 divergent HIV isolates were screened for their ability to bind to 17b and 48d in ELISAs. Although MAb 48d binds to HIV IIIB recombinant gp120 protein, in our studies 48d selectively bound only to the HIV Can0A V3 peptide and not to HIV IIIB V3 peptide, whereas MAb 17b bound none of the peptides tested. Monoclonal antibody 48d bound to the HIV Can0A V3 peptide both in solid-phase ELISA and in solution in a competitive ELISA, but could not bind to HIV Can0A V3 peptide bound to human T cells. The HIV Can0A V3 peptide induced anti-HIV antibodies in rhesus monkeys that neutralized the laboratory-adapted HIV MN strain but did not induce antibodies that neutralized HIV IIIB/LAI, HIV SF-2, or HIV RF isolates, or that neutralized HIV primary isolates. These data suggested that the primary sequence of the HIV Can0A V3 loop exists in a conformer that mimicks a non-V3 determinant of native gp120 exposed subsequent to CD4 binding on the surface of gp120 of laboratory-adapted HIV strains. Structural studies of the Can0A V3 peptide and/or the 48d MAb may provide important information regarding the nature of gp120 conformational changes that occur following gp120 ligation by CD4.  相似文献   

19.
The immunoreactivity, functional activity, and molecular features of a human monoclonal antibody (HMAb), F240, from an HIV-1-infected individual have been studied. Flow cytometric analysis demonstrated that F240 is reactive with cells infected with a broad range of laboratory isolates but not with uninfected cells. Reactivity of F240 is greatly enhanced by preincubation of infected cells with soluble CD4, and to a much lesser extent, with F105, an HMAb reactive with the CD4-binding site of gp120. This enhancement is temperature dependent, with maximum enhancement observed at 37 degrees C, and suggests that the F240 epitope may be more accessible after gp120 has bound to CD4 in vivo. Immunoblot analysis reveals antigen specificity of F240 for gp41 or its precursor gp160. F240 specificity is mapped to the immunodominant region of the gp41 ectodomain by Pepscan analysis. This epitope has been implicated in eliciting nonprotective antibodies that enhance infection in the presence of complement. Consistent with this, F240 failed to neutralize laboratory isolates and enhanced viral infection in a complement-dependent manner. The F240 VH demonstrates extensive somatic mutations compared with the product of its closest homologous germline gene VH3-3.11. Most amino acid substitutions occur in CDR2, characteristic of an antigen-driven response, and in FR3, a phenomenon observed in other anti-HIV-1 envelope HMAbs. Primary structure analysis of the F240 heavy chain revealed strong homology in the CDR domains to an HMAb (3D6) reactive with the same gp41 region, which suggests that these HMAbs could define a potential human antibody clonotype.  相似文献   

20.
The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号