共查询到20条相似文献,搜索用时 62 毫秒
1.
针对连续非线性系统中单输入单输出Hammerstein模型,由于传统辨识方法对Hammerstein模型中非线性部分具有不易辨识的缺陷,造成辨识精度低,辨识效果差等问题.为此,采用粒子群优化算法对非线性系统进行辨识的方法,将参数辨识问题转换为参数空间上的函数优化问题.为了进一步增强粒子群优化算法的辨识性能,提出采用迭代... 相似文献
2.
系统辨识是现代控制理论中的一个很活跃的分支。目前的系统辫识多采用二次规划等解析算法,不足之处在于可辫识的参数少、收敛慢、对参数的初值依赖大。随着智能控制领域研究的不断发展,非线性程度也就越来越高,一些经典的方法很难满足需要。而小种群粒子群算法(SPPSO)作为一种全局优化算法,易于实现,且收敛速度快,计算效率高,在处理数据量较大的大规模种群问题时可大大降低时间和资源的开销,因此在系统辨识特别是高度非线性、时滞系统中更具有意义。而这类复杂的系统在医学系统中具有典型性。所以将该算法用于求解时滞的乙型肝炎动力学模型有很好的研究价值和实用价值。 相似文献
3.
王鑫鑫刘朝涛王正杰瞿蒋江 《传感器世界》2023,(12):10-14
针对传统方法在单输入单输出Hammerstein模型的辨识上存在辨识精度低、辨识效果差等问题,文章提出一种基于蜣螂优化算法(Dung Beetle Optimizer,DBO)的非线性系统辨识方法。为了克服该算法在局部开发和全局探索上能力不平衡,易陷入局部最优的问题,引入改进的正弦余弦优化算法(Sine Cosine Algorithm with Self-learning strategy and Lévy, SCASL)用于平衡局部和全局搜索阶段,提高算法辨识精度,同时引入莱维飞行(Lévy flight)策略,帮助DBO算法在迭代后期跳出局部最优。通过数值仿真,对蜣螂优化算法和改进的蜣螂优化算法辨识结果进行比较,实验结果表明,改进的蜣螂优化算法辨识速度得到显著提升,并且辨识精度也得到了提高。 相似文献
4.
5.
6.
分子对接同的之一,是找出配体和受体之间最稳定构像的结合模式,可以归为全局搜索或优化问题.本文提出的鼍子行为粒子群优化算法(QPSO)是1种有效的全局优化搜索算法.本文介绍QPSO算法在分子对接问题研究中的应用,并使用Autodock3.05的打分函数评价分子对接结果.结果表明,QPSO算法的QDOCK程序能够寻找出更为稳定的构像,且其收敛速度以及对接结果的精确性均比拉马克遗传算法(LGA)的Autodock3.05好. 相似文献
7.
8.
根据智能控制的特点,提出一个智能控制系统的多级控制解决办法,对系统辨识的协同算法进行深入研究。首先,利用协同算法进行智能控制的系统辩识,然后构造主控制级、自学习控制级和协调控制级等三级结构来解决智能控制的复杂性问题。利用协同算法实现了一个晶体生长智能控制系统,协同算法对提高系统辨识的精度是有益的,多级结构是一个发展方向,但协调控制级的工作还需要改进。 相似文献
9.
研究非线性系统辨识问题.针对非线性系统中单输入单输出Hammerstein模型,由于传统辨识方法对Hammerstein模型中非线性部分具有不易辨识的缺陷,造成辨识精度低、辨识效果差等问题.为此,在基本粒子群算法的基础上,提出了一种带有收缩因子的改进的粒子群算法对非线性系统进行辨识的方法,可将参数辨识问题转换为参数空间上的函数优化问题,然后利用粒子群算法的并行搜索能力进行参数寻优.通过MATLAB软件进行仿真,并与基本粒子群算法进行比较,结果表明,利用改进算法不仅提高了辨识精度而且获得了良好的辨识效果,从而验证了算法的有效性和可行性. 相似文献
10.
QPSO算法优化的非线性观测器设计方法研究 总被引:3,自引:0,他引:3
具有量子行为的粒子群优化算法(Quantum-behavedParticleSwarmOptimization,简称QPSO)是继粒子群优化算法(ParticleSwarmOptimization,简称PSO)后,最新提出的一种新型、高效的进化算法。论文在研究基于PSO算法的非线性观测器基础上,提出了一种基于QPSO算法的非线性观测设计方法。以vanderPol系统为例进行了仿真实验,其基本思想是将非线性连续时间系统的状态估计问题转换为非线性函数的在线优化问题,然后利用PSO或QPSO算法获得系统状态的最优估计。仿真结果显示了基于QPSO算法的非观测器比基于PSO算法的非线性观测器的性能更优越。 相似文献
11.
在PSO算法的基础上提出的基于量子行为的QPSO算法,并将其应用到基因表达数据集上。QPSO基因聚类算法是将N条基因根据使TWCV(Total Within-Cluster Variation)函数值达到最小分到由用户指定的K个聚类中。根据K-means算法的优点,利用K-means聚类的结果重新初始化粒子群,结合QPSO和PSO的聚类算法提出了KQPSO和KPSO算法。通过在4个实验数据集上利用K-means、PSO、QPSO、KPSO、KQPSO 5个聚类算法得出的结果比较显示QPSO算法在基因表达数据分析上具有良好的性能。 相似文献
12.
提出基于量子粒子群的投影寻踪聚类算法,该算法将量子粒子群的全局搜索能力与投影寻踪对高维数据的降维能力相结合,有效解决了高维数据聚类计算量大效率低的问题。并将该算法应用于三种不同的测试数据,仿真实验结果表明该算法具有更好的效率,且提高了聚类效果,是解决高维聚类问题的一种有效方法。 相似文献
13.
14.
训练支持向量机的本质问题就是求解二次规划问题,但对大规模的训练样本来说,求解二次规划问题困难很大。遗传算法和粒子群算法等智能搜索技术可以在较少的时间开销内给出问题的近似解。量子粒子群优化(QPSO)算法是在经典的微粒群算法的基础上所提出的一种有较高收敛性和稳定性的进化算法。将操作简单而收敛快速的QPSO算法运用于训练支持向量机,优化求解二次规划问题,为解决大规模的二次规划问题开辟了一条新的途径。 相似文献
15.
QPSO算法优化BP网络的网络流量预测 总被引:2,自引:0,他引:2
网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,与PSO训练的BP网络以及直接用BP网络进行预测的模型相比,基于QPSO训练的BP网络流量预测模型具有更好的预测能力。 相似文献
16.
非线性动态系统建模方法研究 总被引:1,自引:0,他引:1
讨论了一类非线性动态系统建模的新方法。首先,假设原非线性动态系统可以用Hammerstein模型来表示。然后,将Hammerstein模型的非线性传递函数转换为等价的线性形式,从而建立起中间模型。接下来,利用粒子群优化(Particle Swarm Optimization,PSO)算法辨识出中间模型参数。最后,通过中间模型参数与Hammerstein模型参数之间的关系,推出非线性静态环节和线性动态环节的参数,从而实现原非线性动态系统建模。为了进一步增强建模的性能,提出了利用一种改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法。仿真结果说明了该方法的合理性和有效性。 相似文献
17.
混沌映射的多种群量子粒子群优化算法 总被引:1,自引:0,他引:1
针对量子粒子群优化算法存在早熟收敛的问题,提出一种基于Logistics混沌映射变异的多种群量子粒子群优化算法(CMQPSO),采用分段Logistics混沌映射生成初始粒子群,根据适应度值将群体分为顶层和底层种群。顶层出现聚集时才进行高斯扰动,底层种群则按概率通过Logistics混沌变异生成分布更为均匀的粒子,提高种群的多样性,从而较好地平衡了算法的局部和全局搜索能力。对测试函数的计算表明算法较QPSO等其他算法在搜索能力和收敛速度方面有明显改进。分析了算法重要参数停滞阈值[Cσ]和比例系数[S]对搜索性能的影响,给出合理的取值范围。 相似文献
18.
分析了非线性PID控制器各部分参数对于误差的理想变化过程;构造出一种非线性PID控制器;整定参数较多时;传统的参数优化方法容易产生振荡和较大的超调量;在分析量子粒子群算法(QPSO)的基础上;引入了随机选择最优个体的思想;提出使用改进的量子粒子群算法(GQPSO)优化非线性PID控制器参数。将改进量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较。最后;通过典型传递函数实例;分别使用Z-N、PSO、QPSO方法和改进的量子粒子群算法进行了PID控制器参数优化设计;并对结果进行了分析。 相似文献
19.
针对订单选择问题,考虑订单具有不同制程的特征,建立了以总收益为目标的混合整数非线性规划模型。以量子粒子群优化算法为框架进行求解,采用基于排序的粒子编码方案表达0-1变量和整数变量,提出四种种群初始化策略以便提高求解质量,并在迭代过程中对不可行解进行修复。通过对比验证,结果表明模型和算法可行、有效。 相似文献