首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
The effects of serrated grain boundaries on the creep-rupture properties of wrought cobaltbase HS-21 alloys were investigated at 1311 and 1422 K. The amount of grain-boundary sliding and the initiation and growth of grain-boundary cracks were also examined during creep at 1311 K. Specimens with serrated grain boundaries exhibited longer rupture life and larger rupture ductility than those with straight grain boundaries, but these specimens had almost the same rupture life and rupture ductility under lower stresses at 1422 K, because serrated grain boundaries were also formed in specimens with originally straight grain boundaries. The average amount of grain-boundary sliding during creep at 1311 K increased with time (or with creep strain), but was almost the same in both specimens with serrated grain boundaries and those with straight grain boundaries at the same creep strain. Grain-boundary cracks or voids initiated in the early stage of creep in those specimens at 1311 K. Therefore, the strengthening by serrated grain boundaries at high temperatures above about 1311 K was attributed to the retardation of growth and linkage of grain-boundary cracks and voids.  相似文献   

2.
The change in the fractal dimension of the grain boundaries during creep was investigated using an austenitic SUS304 steel at 973 K. The fractal dimension of the grain-boundary surface profile (the fractal dimension of the grain boundaries, D, 1 < D < 2) in the plane parallel to the tensile direction (in the parallel direction) and in the transverse direction, was examined on specimens deformed up to rupture (about 0.30 creep strain). Grain boundaries became serrated and the fractal dimension of the grain boundaries increased with increasing creep strain, because the density of slip lines which formed ledges and steps on grain boundaries increased as the creep strain increased. The increase in the fractal dimension due to creep deformation was slightly larger under the higher stress (118 MPa) than under the lower stress (98 MPa), while the increase of the fractal dimension with strain was a little larger in the specimens tensile-strained at room temperature (293 K) than in the crept specimens. These results were explained by the grain-boundary sliding and the diffusional recovery near grain boundaries, which lowered the increase of the fractal dimension with the creep strain. The fractal dimension of the grain boundaries in the parallel direction was slightly larger than that in the transverse direction in both creep at 973 K and tensile deformation at room temperature, especially at the large strains. This could be correlated with the shape change of the grains by creep or plastic deformation. Grain-boundary cracks were principally initiated at grain-boundary triple junctions in creep, but ledges, steps and carbide precipitates on serrated grain boundaries were not preferential nucleation sites for the cracks.  相似文献   

3.
Type 316 austenitic steel has been heat-treated to produce a range of grain sizes and then creep-tested at 625° C at various stresses so as to examine the nucleation and the factors which effect the nucleation of grain-boundary triple point or wedge cracks. An internal marker technique was used to evaluate the extent of the grain-boundary sliding in relation to the total creep strain. Triple point crack nucleation occurred over the entire range of grain sizes and stresses examined when the product of the stress and grain-boundary displacement reached a critical value; the effective surface energy for grain boundary fracture, estimated using an expression derived by Stroh, was in approximate agreement with the surface free energy value indicating that only limited relaxation occurred by plastic deformation. The first cracks were observed to form along grain boundary facets perpendicular to the applied stress direction and with the sliding grain boundaries at high angles (60 to 80°) to the crack growth direction. Subsequent cracking occurred under conditions which deviated slightly from this initial condition, and the increase in crack density with strain was expressed in terms of geometrical factors which take account of the orientation effects.  相似文献   

4.
The effect of temperature cycling on the creep behaviour of Nickel 201 and Inconel 600 in combustion gas has been studied. Specimens were tested both at constant temperature, 900° C, and at 900° C interrupted by temperarature drops down to 510° C. The creep straining has been analysed with respect to a weighted time parameter which includes the creep contribution during the lower temperatures of each cycle. With respect to this compensated time parameter, the temperature variations were generally observed to result in a strong acceleration in creep. The effect seemed to increase with increasing frequency of temperature drops, increasing grain size and decreasing stress. Thus, at low stress levels, large-grained specimens of both alloys experienced an acceleration even inabsolute creep rate upon cycling. The grain size dependency indicates that the destructive effect of the cycles is caused by crack formation. Surface cracking associated with grain boundary oxidation seemed to be the dominant cracking mode. It is suggested that, during creep in oxidizing environments, repeated periods of cooling might strongly accelerate the growth of surface creep cracks due to the difference in thermal expansion between metals and oxides. This difference causes high tensile stresses to arise in the metal in front of the grain boundary oxides, and the stresses are assumed to be high enough to nucleate microcracks along the boundary.  相似文献   

5.
The effects of high-temperature ageing on creep-rupture properties were studied using cobalt-base superalloys containing about 14–20 wt% tungsten (W) at 1089 K (816 °C) and 1 311 K (1038 °C) in air. A high-temperature ageing for 1080 ks at 1273 K after solution treatment caused grain-boundary and matrix precipitates of W solid solution and carbide phases in these alloys, and grain boundaries were serrated especially in the alloys with higher W content. The high-temperature ageing largely improved the rupture life in the alloys with higher W content, particularly under lower stresses at 1089 K, whereas it caused the creep ductility to decrease a little in the alloy containing 20% W. The high-temperature ageing also improved the rupture life without decreasing creep ductility in these alloys under higher stresses at 1311 K. Under the same ageing conditions of 1080 ks at 1273 K, the initiation of grain-boundary cracks was retarded in the solution-treated and aged specimens, as well as in the aged specimens with serrated grain boundaries, for the alloys with higher W content at both 1089 and 1311 K. A large amount of grain-boundary serration also occurred in the non-aged specimens of the alloys with higher W content during creep at 1311 K, and contributed to the strengthening of the alloys. The solution-treated and aged specimen had almost the same rupture strength as the aged specimens with serrated grain boundaries in these cobalt-base alloys. The rupture strength of the solution-treated and aged specimens largely increased with increasing W content under the lower stresses at 1089 K and under the higher stresses at 1311 K. A ductile grain-boundary fracture surface, which was composed of dimples and grain-boundary ledges associated with grain-boundary precipitates, was observed in the solution-treated and aged specimens, as well as in the aged specimens with serrated grain boundaries at both 1089 and 1311 K. The fracture surface of the non-aged specimens was a brittle grain-boundary facet at 1089 K, but it became a ductile grain-boundary fracture surface, as serrated grain boundaries were formed owing to grain-boundary precipitates occurring during creep at 1311 K.  相似文献   

6.
Failure of structural components operating under high mechanical loading and/or in aggressive environments can often be attributed to intergranular degradation, e.g. by creep, corrosion, fatigue or brittle cracking. The present article is focussed on oxygen-diffusion-controlled grain-boundary attack, for example, of a nickel-based superalloy leading to intercrystalline oxidation or rapid cracking by dynamic embrittlement. Since grain-boundary diffusion depends on the crystallographic orientation relationship between adjacent grains, the grain-boundary-engineering approach was applied to reduce the susceptibility to grain-boundary attack. The relevant mechanisms are discussed in terms of modifying the network of general high-angle and so-called special grain boundaries taking the results of cracking experiments on bicrystals into account.  相似文献   

7.
A study has been made of the influence of test variables on the formation of the diamond grain configuration during high temperature creep and fatigue deformation of a wide variety of metals. The proposed mechanisms for the formation of this interesting grain morphology are reviewed. It is concluded that the diamond grain configuration arises from a balance between grain-boundary sliding, grain-boundary mobility, intragranular deformation and defect imbalance across the grain boundaries and that it tends to be stabilized by intergranular cavitation. While the phenomenon occurs during high temperature fatigue in a variety of metals irrespective of their crystal structure, during creep it has been observed only in to h c p metals. It is surmised that the occurrence of the diamond array of grain boundaries during creep deformation in h c p metals is aided by the limited number of slip systems which leads to high defect imbalances in adjacent grains and consequently high driving forces for grain-boundary migration. On the basis of quantitative metallography involving measurements of the number of edges per grain section, the number of grains meeting at vertices, angular distribution histograms and grain-boundary lengths in different angular orientations with respect to the stress axis in "annealed" and "diamond" microstructures, it is concluded that the shape of the "diamond" grain is essentially the same as that of the "annealed" grain but in a distorted form.  相似文献   

8.
The construction of deformation mechanism maps for a polycrystalline ionic solid in which anion and cation transport are coupled has been demonstrated. Because of anioncation ambipolar coupling, two regimes of Coble creep are possible in systems where anion grain boundary transport is rapid: (1) rate-controlled at low temperatures and small grain sizes by cation grain-boundary diffusion, and (2) rate-limited at high temperatures and large grain sizes by anion grain-boundary diffusion. A new type of deformation mechanism map was introduced in which the temperature and grain size were primary variables. This map was shown to be particularly useful for materials which deform primarily by diffusional creep mechanisms. Ambipolar diffusional creep theory was used to construct several deformation mechanism maps for polycrystalline MgO and magnesiowustite over wide ranges of stress, grain size, temperature and composition.  相似文献   

9.
The stress distribution developed in test pieces during compression creep has been determine using the finite element method. The analyses are shown to account precisely for the inhomogeneous distribution of grain-boundary cracks developed during creep of polycrystalline magnesia and indicate that the accommodation of grain-boundary sliding by cavity formation is the rate-controlling process during high temperature creep of reaction-bonded silicon nitride.  相似文献   

10.
Effects of high-temperature ageing on the creep-rupture properties of cobalt-base L-605 alloys were investigated at 1089 and 1311 K in air. The specimens with serrated grain boundaries and those with normal straight grain boundaries were aged for 1080ksec at 1273 or 1323 K to cause the matrix precipitates of tungsten-rich b c c phase and M6C carbide. The creep-rupture strength of both specimens were improved by the high-temperature ageing. The rupture strength at 1311 K was the highest in the specimens with serrated grain boundaries aged at 1273 K, while the specimens with straight grain boundaries aged at 1273 K of the highest matrix hardness had the highest rupture strength at 1089 K. The high-temperature ageing did not decrease the rupture ductility of specimens. The ruptured specimens with serrated grain boundaries exhibited a ductile grain-boundary fracture surface which consisted of dimple patterns and steps, regardless of whether high-temperature ageing was carried out. The fracture mode of the specimens with straight grain boundaries was changed from the brittle grainboundary fracture to the ductile one similar to that of the specimens with serrated grain boundaries by high-temperature ageing, since large grain-boundary precipitates which gave nucleation sites of dimples were formed during the ageing. The grain-boundary cracks initiated in the early stage of creep (transient creep regime) in both non-aged and aged specimens of L-605 alloys in creep at 1089 and 1311 K, although the time to crack initiation is shorter in the specimens with straight grain boundaries than in those with serrated grain boundaries. Thus, the period of crack growth and linkage occupied most of the rupture life. The strengthening mechanisms of the aged specimens were also discussed.  相似文献   

11.
Fatigue crack propagation experiments have been carried out at low load amplitudes with a high purity and a corresponding commercial purity Al-Zn-Mg alloy. When the high purity alloy was tested in laboratory air, cracks were often seen to propagate along the grain boundaries. Particularly in the peak aged condition, this alloy is highly susceptible to failure by intercrystalline cracking. However, with dry nitrogen as the test environment, the crack was observed to propagate preferentially along shear bands within individual grains. In the commercial purity alloy, grain-boundary crack propagation was not observed for either laboratory air or dry nitrogen atmospheres. The proportion of intercrystalline cracking in laboratory air could be lowered for the high purity alloy by a thermomechanical treatment.  相似文献   

12.
To ensure reliability of elevated temperature components, the creep behaviour of weldment must be predicted since the ultimate failures mostly take place at this tiny region. In the case of low alloy ferritic steels, the most likely failure mode of equipment operated for long hours should be Type IV cracking, which is defined as preferential damage evolution at the Intercritical HAZ (ICZ). Despite the importance of this phenomenon, there have been some uncertainties remained unsolved. In order to elucidate the cause and accelerating factors of Type IV cracking, creep behaviours of cross-weld and the ICZ microstructure have been examined in the present work using service-exposed 1.25Cr-0.5Mo steel.Onset time to Type IV failure significantly reduced when tested by spirally notched cross-weld specimens as a result of concentrated damage accumulation at the root of a vee notch, revealing that multiaxaial stress state could play a key role in Type IV failure.The feature of creep damage suggests that grain boundary damage leading to Type IV cracking is caused by the sliding of grain boundaries around fine grains which are considered to be the products of partial transformation during welding. Heterogeneous damage evolution to the level of facet cracking surrounded by damage free grains raises the fundamental question on the validity of a generally accepted assumption, namely, that stress of grains associated with a grain boundary cavity will be off-loaded. As a matter of fact, a clear evidence that grain boundary cavitation accelerates the strain rate at the tertiary regime has not been observed in creep curves of simulated ICZ specimens, owning a bimodal microstructure expected at the ICZ in whole gauge length.Difference in the susceptibility to Type IV cracking has been found in materials with the same alloying elements and the vulnerability of the ICZ microstructure is not necessarily dependent upon creep strength of parent material.Considerable metallurgical factors to shorten the onset time to Type IV damage and the effectiveness of strain rate measurement as a potential technique for the life assessment shall be discussed.  相似文献   

13.
The occurrence of grain-boundary sliding during creep in fine grained alumina was examined by inscribing marker lines on the tensile surfaces of specimens, prior to testing in four-point bending mode. There was considerable microstructural evidence for the occurrence of grainboundary sliding and grain rotation during creep deformation. Experimental measurements of the offsets in the marker lines at grain boundaries reveal that the grain-boundary sliding contribution to the total strain during creep deformation is 70 ± 6.2%. The extensive grain boundary sliding observed, together with the other mechanical properties, suggests that polycrystalline alumina exhibits superplastic characteristics. Several possible rate controlling mechanisms are examined critically in light of the present results and it is concluded that creep occurs either by an independent grain-boundary sliding mechanism or by an interface controlled diffusion mechanism.  相似文献   

14.
The effect of serrated grain boundaries on creep crack growth is investigated using an austenitic 21Cr-4Ni-9Mn steel principally at 700° C. The relationship between the microstructure of specimens and the crack growth behaviour is discussed. The creep crack growth rate in the specimens with a surface notch is relatively reduced by serrated grain boundaries especially in the early stage of crack growth. The life of crack propagation in the specimens with serrated grain boundaries is longer compared with that of the specimens with straight grain boundaries. It is confirmed in the surface crack growth of smooth round bar specimens crept at 700° C that serrated grain boundaries are effective in retarding the growth of a grain-boundary crack less than about 4×10–4 m long, and that this effect decreases with increasing crack length. It is suggested that crack deflection due to serrated grain boundaries caused a decrease in the stress intensity factor of the grain-boundary crack and resulted in a decrease of the crack growth rate in the steel. The crack arrest at the deflection points and the circumvention of crack path on the serrated grain-boundaries may also contribute to the retardation of the grain-boundary crack growth during creep. Further, it is deduced from the experimental results on the notched specimens that the creep fracture is caused by the linkage of the main crack to many microcracks and voids on the grain-boundary at 900°C.  相似文献   

15.
Grain size effects were used to evaluate the relative contributions of aluminium lattice and oxygen grain boundary diffusion to the high temperature (1350 to 1550° C) steady state creep of polycrystalline alumina, pure and doped with transition metal impurities (Cr, Fe). Divalent iron in solid solution was found to enhance both aluminium lattice and oxygen grain-boundary diffusion. Large concentrations of divalent iron led to viscous Coble creep which was rate-limited entirely by oxygen grain-boundary diffusion. Nabarro-Herring creep which was rate-limited by aluminium lattice diffusion was observed in pure and chromium-doped material. Chromium additions had no effect on diffusional creep rates but significantly depressed non-viscous creep modes of deformation. Creep deformation maps were constructed at various iron dopant concentrations to illustrate the relative contributions of aluminium grain boundary, aluminium lattice, and oxygen grain-boundary diffusion to the diffusional creep of polycrystalline alumina.  相似文献   

16.
Continuous creep cavity nucleation by stochastic grain-boundary sliding   总被引:1,自引:0,他引:1  
Creep cavitation in metals and ceramics is generally considered to occur by the nucleation, growth, and coalescence of grain-boundary cavities. By considering grain-boundary slidings as the process driving force, a stochastic model is proposed for continuous cavity nucleation in metals and ceramics subjected to creep loading. The nucleation rate is shown to be directly proportional to the number of grain-boundary sliding events. The dependence of the number of cavities on grain boundary sliding displacement, creep strain, and time are established and compared with available experimental data of alumina, copper, and copper alloys. This comparison supports the contention that creep cavity nucleation in metals and ceramics does originate from stochastic grain-boundary sliding.  相似文献   

17.
The effect of the grain-boundary microstructures on the creep-rupture properties and the initiation and growth of the grain-boundary cracks was investigated using four kinds of specimen of various grain-boundary microstructures in the cobalt-base HS-21 alloy at 1089 K in air. Both the rupture strength and the creep ductility increased with increasing mean value of the fractal dimension of the grain boundaries, Dgb. The strain to crack initiation was largest in the specimen of the highest value (1.241), while the strain was much the same in the specimens of the Dgb value less than 1.162. This was explained by the local variation in the grain-boundary microstructures in these specimens. The mean value of the fractal dimension of the grain-boundary fracture, Df, was close to the value of Dgb, although the value of Df was a little higher than that of Dgb in the specimens of the lower Dgb values. The fracture appearance changed from a brittle grain-boundary fracture to a ductile one with increasing values of Dgb and Df. The crack-growth rate is the surface-notched specimens decreased with increasing value of Dgb. The threshold stress intensity factor for crack growth was higher in the specimens with the higher Dgb values. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Effects of grain-boundary reaction precipitates on fatigue-crack growth rate were investigated using austenitic 21 wt% Cr-4 wt% Ni-9wt% Mn heat-resisting steel at 973 K in air. Grain boundaries were serrated by-the grain-boundary reaction precipitates. The crack growth rate was considerably decreased by these precipitates, especially at low crack growth rates. Fatigue cracks extended to the serrated grain boundaries or to the interface between the grain-boundary reaction nodule and the grain. Therefore, the cracks grew along zigzag paths, and brittle intergranular fracture was inhibited. The decrease in the fatigue-crack growth rate was explained by these changes in fracture mode.  相似文献   

19.
Grain-boundary sliding and diffusional changes at grain boundaries were monitored on the surface and in the interior of a magnesium alloy Magnox ZR55 tested under diffusional creep conditions. The behaviour is compared and contrasted to that observed under recovery creep conditions. It was found (i) that diffusional and recovery creep exhibit distinctively different angular dependencies of grain-boundary sliding, (ii) that the surface and interior grains exhibit the same sliding and diffusional changes (in the plane of the surface) under diffusional creep conditions, (iii) that a previously presented method for the measurement of diffusional creep [1], when modified as described here, allows the determination of diffusional and sliding components for samples with either ascut or annealed surface conditions and (iv) that under diffusional creep conditions the value ofγ is 0.5.  相似文献   

20.
By means of the measurement of the creep curve and the observation of SEM and transmission electron microscope (TEM), an investigation has been made into the microstructure evolution and deformation features of AZ31 Mg-alloy during high temperature creep. Results show that the deformation features of the alloy in the primary stage of creep are that significant amount of dislocation slips are activated on basal and non-basal planes, then these ones are concentrated into the dislocation cells or walls as creep goes on. At the same time, twinning occurs as an additional deformation mechanism in the role of the compatibility stress. During steady state creep, the dislocation cells are transformed into the subgrains, then, the protrusion and coalition of the sub-boundaries results in the occurrence of dynamic recovery (DRV). After the dynamic recrystallization (DRX), the multiple slips in the grain interiors are considered to be the main deformed mechanism in the later stage of the steady state creep. An obvious feature of creep entering the tertiary stage is that the cracks appear on the locations of the triple junction. As creep continues, the cracks are viscous expanded along the grain boundaries; this is taken for being the fracture mechanism of the alloy crept to failure. The multiple slips in the grain interiors and the cracks expanded viscous along the grain boundary occur in whole of specimens, that, together with the twins and dynamic recrystallization, is responsible for the rapid increase of the strain rate in the later stage during creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号