首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the influence of crystalline SiC buffer layers on the critical current density and on the flux pinning mechanism in MgB2 thin films. Crystalline SiC buffer layers were deposited on the Al2O3 (0001) substrates by using a pulsed laser deposition method, and then MgB2 thin films were grown on the SiC-buffered layer by using a hybrid physical-chemical vapor deposition technique. MgB2 thin films with crystalline SiC-buffered layers showed a significant critical current density’s enhancement in the high magnetic field region. An uncommon plateau-like behavior was also observed when the normalized flux pinning force density was scaled with the reduced magnetic field. Based on the analyses of the scaling behavior of the flux pinning force, grain boundary pinning is likely to be a dominant pinning mechanism in the SiC-buffered MgB2 thin films.  相似文献   

2.
Magnesium diboride is a promising material for superconducting RF (SRF) cavity applications. Compared to the currently used superconductor for SRF cavities Nb, MgB2 has the potential to achieve lower RF loss and higher acceleration field due to its higher critical temperature and thermodynamic critical magnetic field. Since the RF field only penetrates a few penetration depths into a superconductor, a superconducting coating of several hundred nanometers on a metal cavity is sufficient for superb SRF cavity performances. In this work, we report the properties of MgB2 thin films deposited by the hybrid physical–chemical vapor deposition (HPCVD) technique on different metal substrates including Nb, Mo, Ta, and stainless steel. All the films were polycrystalline, as indicated by X-ray diffractometry and scanning electron microscopy, and showed T c ~39 K, determined by resistance versus temperature, magnetic susceptibility, and dielectric resonator measurements. MgB2 films deposited on Nb substrates polished to various degrees of smoothness exhibit similar T c . The result is a promising step in the investigation of using MgB2 as an alternative to Nb for SRF cavities.  相似文献   

3.
We fabricated superconducting MgB2 thin films on (001) MgO substrates by magnetron rf and dc co-sputtering on heated substrates. We annealed the samples ex-situ and in-situ at temperatures between 450 °C and 750 °C. The substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB2 superconducting thin films. We achieved a critical onset temperature of up to 27.1 K for the ex-situ and 25.6 K for the in-situ annealed samples at a film thickness of 30 nm. The samples shows an out of plane (0002)-Peak which was determined by x-ray diffraction.  相似文献   

4.
The recently discovered superconductor MgB2 with T c at 39 K has great potential in superconducting electronics. In this paper, we review the deposition techniques used for MgB2 thin films in the light of a thermodynamic study of the Mg-B system with the calculation of phase diagrams (CALPHAD) modeling technique. This thermodynamic study identifies a growth window in the pressure–temperature phase diagram, in which the magnesium pressure is very high for likely in situ growth temperatures. A Hybrid Physical–Chemical Vapor Deposition (HPCVD) technique that successfully achieves such a high Mg pressure is shown to produce in situ epitaxial MgB2 thin films with bulk superconducting properties.  相似文献   

5.
The electrodynamic response at 20 GHz of c-axis oriented MgB2 superconducting thin films is reported. Mg-rich Mg-B precursor samples were grown on MgO and Al2O3 single crystal substrates by a d.c. planar magnetron sputtering technique, and subsequently annealed in situ at 800°C for 10 min in a In-sealed Nb box in the presence of saturated Mg vapor. The films were characterized by a variety of structural and electronic techniques including XRD, EDS, STM-AFM analyses, and transport measurements. The dependence of the surface impedance from temperature and radiofrequency (r.f.) field amplitude was measured via a dielectric resonator technique. Temperature data clearly confirm the s-wave nature of the newly discovered superconductor, even if the value of the energy gap is smaller than BCS prediction. An effective two-band model can be applied to quantitatively explain the experimental results. In spite of previous reports claiming the absence of weak link behavior in MgB2, the power dependence show that granularity governs the performance of these films in the microwave region.  相似文献   

6.
The crystal structure and superconductivity of MgB2 thin films grown on various oxide substrates were investigated by X-ray diffraction and resistance measurement. The films were prepared by a two-step method, in which precursors B films were annealed in Mg vapor at 900C. The X-ray diffraction shows that the MgB2 films grown on C–AL2O3, R–AL2O3, and MgO (001) are c-axis oriented while the films grown on SrTiO3 (001), LaAlO3 (001), and ZrO2 (001) are aligned with the (101) direction normal to the substrate planes. All the grown films show superconductivity and their transition temperature varies with the substrates in the range of 34–39 K. We think that the transition temperature variation is probably due to the lattice matching between the film and the substrate, as well as the interdiffusion at the film/substrate interface. The experimental results suggest that if there is no severe interdiffusion at the film/substrate interface in the high temperature annealing process, more substrates could be used for the growth of MgB2 films using the two-step method.  相似文献   

7.
MgB2 thin films were deposited on MgO (100) substrate and r-plane Al2O3 $(1\bar{1}02)$ substrate by ex-situ annealing of boron film in magnesium vapor. The thickness of ex-situ annealed MgB2 films is approximately 600 nm according to data observation by ellipsometer. The magnetic properties of samples were determined using a vibrating sample magnetometer. The magnetic field dependence of the critical current density J c was calculated from MH loops and also the magnetic field dependence of F p was compared for the different temperature ranges from 5 to 25 K. The critical current density J c was found to be around 1.0×106 A/cm2 and 1.7×106 A/cm2 in zero field at 5 K for MgB2 films deposited on MgO and r-plane Al2O3 substrates, respectively. It was found that the critical current density of the film deposited on MgO became stronger than that of r-plane Al2O3 in the magnetic field. The superconducting transition temperature was determined by ac susceptibility measurement using physical properties measurement system. ac susceptibility measurements for MgB2 films deposited on MgO and r-plane Al2O3 substrates were performed as a function of temperatures at constant frequency and ac field amplitude in the absence of dc bias field. The critical current densities as a function of temperature were estimated from the ac susceptibility data.  相似文献   

8.
The growth of scandium, titanium and zirconium diborides thin films by pulsed laser ablation technique on different substrates has been studied. In situ reflection high energy electron diffraction and ex situ X-ray diffraction analyses indicate that the films are strongly c-axis oriented on all the substrates and also epitaxial, apart from Si(111), where the in plane orientation is poor. Atomic force microscopy imaging reveals a flat surface in all the epitaxial samples, with roughness lower than 1 nm. The results on silicon carbide and sapphire are very promising for using these materials as buffer layers in magnesium diboride thin films growth, especially to improve epitaxy and to prevent oxygen diffusion from the substrate, and also to study the influence of lattice strain on MgB2 critical temperature.  相似文献   

9.
MgB2 thin films were fabricated on MgO (100) single crystal substrates. First, deposition of boron was performed by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850?°C in magnesium vapor. In order to investigate the effect of FeO nanoparticles on magnetic properties of MgB2 thin films, the films were coated with different concentrations of FeO nanoparticles by spin coating process. The magnetic field dependence of the critical current density $J_{\mathrm{c}}$ was calculated from the M?CH loops and also magnetic field dependence of the pinning force density $f_{\mathrm{p}}(b)$ was determined for the films containing different concentrations of FeO nanoparticles. The values of the critical current density $J_{\mathrm{c}}$ in zero field at 5?K was found to be around 1×106?A/cm2 for pure MgB2 film, 1.4×106 for MgB2 film coated with 25?%, 7.2×105 for MgB2 film coated with 33?%, 9.1×105 for MgB2 film coated with 50?% and 1.1×106?A/cm2 for MgB2 film coated with 100?%. It?was?found that the film coated with 25?% FeO nanoparticles has slightly enhanced critical current density and it can be noted that especially the film coated with 25?% FeO became stronger in the magnetic field. The films coated with FeO were successfully produced and they indicated the presence of artificial pinning centers created by FeO nanoparticles. The superconducting transition temperature of the film coated with 25?% FeO nanoparticles was determined by moment?Ctemperature (M?CT) measurement to be 34?K which is 4?K higher than that of the pure film.  相似文献   

10.
The superconducting properties of magnesium diboride (MgB2) films prepared by electroless deposition on various substrates including silver, gold and silicon are reported. In this study, MgB2 films were fabricated on silver, gold, and silicon using an electroless plating technique, while controlling the redox potential to improve the deposition quality. The structure, morphology, and superconducting properties of the samples were investigated using X-ray diffraction, magnetometry, scanning electron microscopy, and Raman spectroscopy. X-ray diffraction and Raman spectroscopy confirmed that the films are polycrystalline MgB2 but also contain some impurity phases. All the MgB2 films show superconducting transitions near 39 K, the value for bulk MgB2, with the superconducting volume fraction ranging from approximately 1 to 2%. We find a strong dependence of film quality with the oxidation potential of the bath.  相似文献   

11.
The first results of studying the electrical properties of thin silicon carbide (SiC) layers grown on silicon using a new method of solid-phase epitaxy are presented. The type of carriers in these SiC/Si films is determined, and their concentration and mobility are measured. SiC films grown by the proposed method on Si substrates possess n-type conductivity. The concentration of majority carriers (electrons) in undoped SiC layers amounts on average to n ~ 1018 cm?3, and their mobility varies within μ = 27–85 cm2/(V s), depending on the regime of synthesis.  相似文献   

12.
The iron (Fe) diffusion in superconducting MgB2 bulk samples has been studied for sintering time durations of 15 min, 30 min, 1 h, 2 h, and 4 h at 900°C. Fe coating bulk polycrstalline superconducting MgB2 samples for Fe coating were prepared by pelletizing and used in the diffusion experiments with initial sintering at 800°C for 1 h. A thin layer of Fe was coated on MgB2 pellets by evaporation in vacuum. Effects of Fe diffusion on the structural, electrical, and superconducting properties of MgB2 have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), energy-dispersive X-ray spectroscopy (EDS), and resistivity measurements. Fe diffused samples have slightly increased critical transition temperatures and have larger lattice parameter c values, in comparison with bare samples. Fe diffusion coefficients were calculated from depth profiles of c parameter and room temperature resistivity values. Depth profiles were obtained by successive removal of thin layers from Fe diffused surfaces of the samples. Our results have shown that the Fe diffusion coefficient decreases with increasing sintering time and resistivity measurements can be utilized for determination of diffusion coefficient.  相似文献   

13.
We report on the high critical current densities in MgB2 films directly grown on Hastelloy tapes without any buffer layer by using the hybrid physical-chemical vapor deposition method. MgB2 films were formed by reaction of Mg metal vapor with the incoming B2H6 gas on the heated substrates. In MgB2 films grown for 10 min at 500 °C in total working pressure 100 Torr with gas mixing ratio H2:B2H6=70:30, we observed the transport critical current density (J c) was approximately 106 A/cm2 at 4 T and 20 K in magnetic fields applied parallel to the substrate plane. This value is higher than those observed in epitaxial MgB2 films on sapphire substrates grown by using the same method. Magnetic field dependence of J c of this sample was well explained by the grain-boundary pinning model. Our result opens up a possibility that the coated conductors made of MgB2 films have a strong potential for high current applications.  相似文献   

14.
MgB2 thick films have been prepared on Al2O3, MgO and SrTiO3 ceramic substrates using the spray method with two different heat-treatment cycles, 925???C with 10?min (Group?A) and 610???C with 24?h (Group?B). The structural/microstructural (XRD, SEM) and transport (R?CT, MR?CT) properties of the films prepared were investigated. XRD analysis showed that the films in Groups?A and?B consisted mainly of MgB2, but the peaks originating from the substrates were also observed in films fabricated on the Al2O3 substrate. From scanning electron microscopy, it was seen that the surface of MgB2 thick films prepared is not sufficiently homogeneous. Some cracks and heaps with different sizes were observed. The best electrical results were obtained for films in Group?A on Al2O3 substrate. The T c value for films in Group?A was found to be 36.1?K, 36?K and 35?K, for Al2O3, MgO and SrTiO3 substrates, respectively. No superconducting state was reached for films in Group?B on the SrTiO3 substrate. In all the films which showed a superconducting state, the magnetic field strongly affected T c . A?tail in the resistance curves was observed with increasing magnetic field for films in Group?A on the MgO and SrTiO3 substrates. At magnetic fields above 1?T for films in Group?A on the SrTiO3 substrate and above 2?T for films in Group?A on the MgO substrate, the zero-resistance temperature, T 0, was not obtained.  相似文献   

15.
We report on fabrication and characterization of MgB2 thin films and tunnel junction structures. The MgB2 films were prepared on Al2O3, Si, glass, and plastic foil substrates by either vacuum codeposition of boron and magnesium, or high-temperature magnesium annealing of boron films. The crystalline structure of our films depended directly on the method of preparation. The films prepared by codeposition and postannealed in Ar atmosphere were amorphous with nanocrystal inclusions and were characterized by very smooth surfaces. On the other hand, the boron-precursor films annealed in magnesium vapor were rough, polycrystalline with approximately 1-μm-diameter single-crystal blocks. Because of their surface quality, the amorphous films were used for preparation of point contact junctions and for optical characterization. The point-contact spectra of tested junctions exhibited a two-gap structure. The MgB2 polycrystalline films was used for bulk transport studies. The best films were characterized by the critical temperature T c of up to 39 K and the current density j c at 4.2 K of about 107 A/cm2.  相似文献   

16.
We present the formation of MgB2 coatings by simple and novel aerosol deposition technique which has a potential to escalate towards the fabrication of long superconducting tapes. The thin MgB2 coatings were produced by using pre-synthesized MgB2 powder. The ability of this technique to form a precursor powder in a thin film form has greatly reduced the intricacies involved in the synthesis of MgB2 by other techniques like hybrid physical chemical vapor deposition etc. The as-synthesized thin films were characterized by the x-ray diffraction technique to study the structural properties. The thin films were found to be x-ray amorphous in nature depicting the formation of frustrated structure which showed a superconducting transition onset at around 36 K.  相似文献   

17.
The recently discovered superconductor MgB2 with T c at 39 K has great potential in superconducting electronics. In this paper, we review the deposition techniques used for MgB2 thin films in the light of a thermodynamic study of the Mg-B system with the calculation of phase diagrams (CALPHAD) modeling technique. This thermodynamic study identifies a growth window in the pressure–temperature phase diagram, in which the magnesium pressure is very high for likely in situ growth temperatures. A Hybrid Physical–Chemical Vapor Deposition (HPCVD) technique that successfully achieves such a high Mg pressure is shown to produce in situ epitaxial MgB2 thin films with bulk superconducting properties.  相似文献   

18.
The electrodynamic response at 20 GHz of c-axis oriented MgB2 superconducting thin films is reported. Mg-rich Mg-B precursor samples were grown on MgO and Al2O3 single crystal substrates by a d.c. planar magnetron sputtering technique, and subsequently annealed in situ at 800°C for 10 min in a In-sealed Nb box in the presence of saturated Mg vapor. The films were characterized by a variety of structural and electronic techniques including XRD, EDS, STM-AFM analyses, and transport measurements. The dependence of the surface impedance from temperature and radiofrequency (r.f.) field amplitude was measured via a dielectric resonator technique. Temperature data clearly confirm the s-wave nature of the newly discovered superconductor, even if the value of the energy gap is smaller than BCS prediction. An effective two-band model can be applied to quantitatively explain the experimental results. In spite of previous reports claiming the absence of weak link behavior in MgB2, the power dependence show that granularity governs the performance of these films in the microwave region.  相似文献   

19.
The crystal structure and superconductivity of MgB2 thin films grown on various oxide substrates were investigated by X-ray diffraction and resistance measurement. The films were prepared by a two-step method, in which precursors B films were annealed in Mg vapor at 900C. The X-ray diffraction shows that the MgB2 films grown on C–AL2O3, R–AL2O3, and MgO (001) are c-axis oriented while the films grown on SrTiO3 (001), LaAlO3 (001), and ZrO2 (001) are aligned with the (101) direction normal to the substrate planes. All the grown films show superconductivity and their transition temperature varies with the substrates in the range of 34–39 K. We think that the transition temperature variation is probably due to the lattice matching between the film and the substrate, as well as the interdiffusion at the film/substrate interface. The experimental results suggest that if there is no severe interdiffusion at the film/substrate interface in the high temperature annealing process, more substrates could be used for the growth of MgB2 films using the two-step method.  相似文献   

20.
The occurrence of the optical second harmonic generation (SHG) at fundamental wavelength of Er:glass nanosecond 1,540 nm stimulated by two coherent CO2 microsecond laser beams at wavelengths 10.6 and 5.3 μm was observed for the MgB2 films. The SHG signal has shown its sensitivity to the occurrence of the superconducting (SC) phase transition. The SHG achieves its maximum at temperatures higher with respect to the SC transition. The effect is reversible with respect to the photo induced treatment. After the switching off of the external photoinducing treatment the effect almost disappears. However, this still strongly affects the SC properties of the MgB2 thin layers, as the critical current is increased by 50 % after illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号