首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gratings are written holographically with low power (10 mW/cm(2)) 244 nm UV light on thin films of polybutadiene rubber polymer. The increase of hydrophilicity-wettability of polybutadiene films is measured over UV-exposed regions. Sequential fabrication of two orthogonal gratings results in hydrophilic microarrays having applications as functionalized substrates for immobilizing biomolecules. This is demonstrated by immobilizing a phospholipid in a microarray pattern.  相似文献   

2.
An innovative fabrication technique is introduced that is based on multiple-exposure techniques for micro-optics fabrication. This method utilizes various exposure times and combinations of binary and analog photo masks to sculpture complex photoresist profiles. It also demonstrates the fabrication of analog structures from the multilevel structures thus formed by using resist reflow.  相似文献   

3.
Williams  Gwilym  Hunt  Matthew  Boehm  Benedikt  May  Andrew  Taverne  Michael  Ho  Daniel  Giblin  Sean  Read  Dan  Rarity  John  Allenspach  Rolf  Ladak  Sam 《Nano Research》2018,11(2):845-854
Nano Research - Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant...  相似文献   

4.
Tang M  Chen ZC  Huang ZQ  Choo YS  Hong MH 《Applied optics》2011,50(35):6536-6542
This paper reports a maskless multiple-beam laser lithography technique for large-area nanostructure/microstructure fabrication. This lithography technique can flexibly generate arbitrary nanostructures/microstructures over a large area at a high speed. The feature size of the nanostructures/microstructures can be controlled by exposure time and moving speed of the nanostage. Functional predesigned patterns, including split-ring resonator metamaterials for terahertz waves, can be obtained. More complicated structures can be made by single- and double-exposure schemes to make hybrid nanostructures/microstructures and tune surface plasmonic resonance properties. Meanwhile, microstructures with large height to lateral dimension ratios (2.5D microstructures) fabricated on silicon substrates can be used as mold tools for soft lithography. This technology shows its unique capacity to create various nanostructures/microstructures for extensive applications.  相似文献   

5.
In this work we extend the classical nanosphere lithography method to the fabrication of subwavelength metallic nanohole arrays. By combining the reactive ion etching of self-assembled films of polystyrene nanospheres with metal deposition, ordered arrays of nanoholes of different sizes were fabricated. These structures exhibit a well-defined optical response different from that of the regular triangular array and continuous metallic film.  相似文献   

6.
Electrohydrodynamic lithography (EHL) is one of several unusual lithographic techniques for fabricating sub-micrometer structures over a large area. EHL uses the electrohydrodynamic (EHD) film instability induced by a laterally modulated electric field, which allows it to fabricate not only general organic structures but also structures of various components, such as diblock copolymers and inorganic materials, without contact between the resist and the stamp. Furthermore, EHL is a very special lithographic technique in that diverse structures are fabricated from one stamp via electric field modulation. The electric field is controlled by the replication time, air layer thickness, etc. A replicated inorganic structure was demonstrated from a hexagonal hole and line arrays. The heat treatment of the replicated pattern was carried out to obtain the crystalline phase, after which the samples were characterized via Raman spectroscopy. These values were ascertained using field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The results will be useful in providing a facile route for patterning functional metal oxides over a large area. Such a technique can be used to produce photovoltaic cells, memory devices, display devices, etc.  相似文献   

7.
Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits.  相似文献   

8.
9.
Substrate topography plays a vital role in cell and tissue structure and function in situ, where nanometric features, for example, the detail on single collagen fibrils, influence cell behaviour and resultant tissue formation. In vitro investigations demonstrate that nanotopography can be used to control cell reactions to a material surface, indicating its potential application in tissue engineering and implant fabrication. Developments in the catalyst, optical, medical and electronics industries have resulted in the production of nanopatterned surfaces using a variety of methods. The general protocols for nanomanufacturing require high resolution and low cost for fabricating devices. With respect to biological investigations, nanotopographies should occur across a large surface area (ensuring repeatability of experiments and patterning of implant surfaces), be reproducible (allowing for consistency in experiments), and preferably, accessible (limiting the requirement for specialist equipment). Colloidal lithography techniques fit these criteria, where nanoparticles can be utilized in combination with a functionalized substrate to produce in-plane nanotopographies. Subsequent lithographic processing of colloidal substrates utilizing, for example, reactive ion etching allows the production of modified colloidal-derived nanotopographies. In addition to two-dimensional in-plane nanofabrication, functionalized structures can be dip coated in colloidal sols, imparting nanotopographical cues to cells within a three-dimensional environment.  相似文献   

10.
Electromagnetic diffraction of a light wave by a single aperture of subwavelength width and subsequent propagation in a lossy medium are numerically investigated. This diffraction problem simulates exposure of a resist with an amplitude mask. It is found that there is the possibility of fabricating a lambda/2 structure on a resist of lambda/4 thickness, where lambda is the wavelength of the exposing light in vacuum, by conventional contact or by proximity lithography. It is also found that an air gap between a mask and a resist of up to lambda/2 does not have a significant effect on resolution. This approach permits easy and cost-effective fabrication of subwavelength structures and leads to wide availability of diffractive optical elements in the nonscalar domain.  相似文献   

11.
Nanoscale patterns are fabricated by laser interference lithography (LIL) using Lloyd's mirror interferometer. LIL provides a patterning technology with simple, quick process over a large area without the usage of a mask. Effects of various key parameters for LIL, with 257 nm wavelength laser, are investigated, such as the exposure dosage, the half angle of two incident beams at the intersection, and the power of the light source for generating one or two dimensional (line and dot) nanoscale structures. The uniform dot patterns over an area of 20 mm x 20 mm with the half pitch sizes of around 190, 250, and 370 nm are achieved and by increasing the beam power up to 0.600 mW/cm2, the exposure process time was reduced down to 12/12 sec for the positive photoresist DHK-BF424 (DongJin) over a bare silicon substrate. In addition, bottom anti-reflective coating (DUV-30J, Brewer Science) is applied to confirm improvements for line structures. The advantages and limitations of LIL are highlighted for generating nanoscale patterns.  相似文献   

12.
研究了在透光性基底上直接光刻SU8光刻胶制作可实现光集成微流控芯片的工艺,讨论了基底厚度、透光性和样品承载台表面反射性等因素对透光性基底上SU8光刻图形质量的影响.研究结果表明,通过减少样品承载台表面对紫外光的反射,可有效的解决光刻胶内非定义曝光区域出现感光交联的问题.  相似文献   

13.
We propose a new design method for periodic diffraction gratings to be fabricated with direct-writing electron-beam lithography. When the grating has a small period, the proximity effect of electron scattering restricts the grating profile after developing. Our design method optimizes the electron-dose profile and grating profile simultaneously to obtain the desired diffraction efficiency under the restriction of the proximity effect. The optimization is made with rigorous electromagnetic grating analysis and the resist development simulator. When we designed the diffraction grating with a period of 1.0 microm to obtain the highest efficiency of the first-order diffracted light of a 633-nm wavelength, the calculated grating profile was really different from the profile optimized only with rigorous electromagnetic grating analysis. Moreover, the diffraction grating of the electron-beam resist was fabricated according to the simulation result. The estimated diffraction efficiency was 82%, and the measured efficiency was 70%.  相似文献   

14.
In this study, we present a spacer patterning technology for sub-30 nm gate template which is used for nano-scale MOSFETs fabrication. A spacer patterning technology using a poly-silicon micro-feature and a chemical vapor deposition (CVD) SiO2 spacer has been developed, and the sub-30 nm structures by conventional dry etching and chemical mechanical polishing are demonstrated. The minimum-sized features are defined not by the photolithography but by the CVD film thickness. Therefore, this technology yields a large-area template with critical dimension of minimum-sized features much smaller than that achieved by optical lithography.  相似文献   

15.
A new fabrication process of silicon template for nanoimprint lithography is developed. A very fine and high aspect Si lines are fabricated by the combination of plasma process for Si deep etching and anisotropic wet etching by potassium hydroxide solution (KOH treatment). Improved switching process, which consists of sequentially alternating etching and deposition steps, is used as the Si deep etching. The side wall profile of the Si lines can be controlled by the deposition step time. Line pattern with vertical side wall is fabricated. The line width and height are 0.2 µm and 2.9 µm, respectively. By the KOH treatment the side wall corrugation can be reduced and the line width also decreases. Very fine line of 45 nm width at the line top with the pattern height of 3.0 µm can be fabricated by use of the line width shrink by the KOH treatment.  相似文献   

16.
Electrohydrodynamic jet printing (EHJP) technology was demonstrated by fabricating metallic patterns, using a commercialized silver metallo-organic ink. The electrospray was operated in a full voltage-controlled form but without the auxiliary assistance of gas pressure. The freeform deposition of basic structures of patterns was demonstrated, for the first time, by using the unforced electrospray. After heat treatment at 250 °C, an energy-dispersive X-ray spectrum confirmed that the main composition was silver in the patterns. Scanning electron microscope analysis revealed that dense packed silver crystallites were present in the fabricated patterns. An electrical resistivity of 4.34 × 10−8 Ωm, close to the theoretical resistivity of bulk silver, was obtained in the 100 μm-width printed tracks.  相似文献   

17.
The reliable fabrication of nanoelectrode pairs with predefined separations in the few nanometer range is an essential prerequisite for future nanoelectronic devices. Here we demonstrate a fine-tuned electron-beam lithographic (EBL) fabrication route which is suitable for defining nanoelectrode pairs with a gap size down to 3 ± 1 nm and with a yield of 55%. This achievement is based on an optimized two-layer resist system in combination with an adopted developer system, as well as on an elaborated nanoelectrode pattern design taking into consideration the EBL inherent proximity effect. Thus, even a structural control in the nanometer scale is achieved in the EBL process.  相似文献   

18.
A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.  相似文献   

19.
We present an inherently reproducible route to realizing high-performance SERS substrates by exploiting a high-throughput top-down/bottom-up fabrication scheme. The fabrication route employs self-assembly of amphiphilic copolymers to create high-resolution molds for nanoimprint lithography (NIL) spanning entire 100 mm Si wafers. The nanoporous polymer templates obtained upon NIL are subjected to galvanic displacement reactions to create gold nanorod arrays. Nanorods are subsequently converted to nanodiscs by thermal annealing. The nanodiscs were found to perform as robust SERS substrates as compared with the nanorods. The SERS performance of these substrates and its generality for catering to diverse molecules is demonstrated through the excellent Raman peak resolution and intensity for three different molecules, exhibiting different interaction modes on surface. Numerical simulations using FDTD shows plasmonic coupling between the particles and also brings out the influence due to size distribution. The approach combines distinct advantages of high-precision and repeatability offered by NIL with low-cost fabrication of high-resolution NIL molds by copolymer self-assembly.  相似文献   

20.
A versatile patterning approach based on electron-beam lithography (eBL) and solution deposition, termed soft-eBL, has been developed to fabricate radially stacked heterostructures of multifunctional oxides from their sol precursors. Well-defined nanorings of lead zirconate titanate (PZT) are fabricated on a variety of substrates such as noble metals (e.g., Au), semiconductors (e.g., Si), and oxide single crystals (e.g., SrTiO3), which were previously functionalized with appropriate self-assembled monolayers (SAMs). The undercut in the double-layer eBL resist and substrate functionalization with the SAM treatment play a vital role in the formation of the ring structures. The nanorings are then used as building block "containers" and ring-reservoirs are filled with a second sol (e.g., CoFe2O4) to form radially stacked composite ceramic heterostructures. The approach presented here does not require either feature alignment to realize heterostructures or the etching of ceramics, and is amenable to a variety of radially stacked composite heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号