首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

2.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to synthesize the amphiphilic diblock copolymers of poly(methacrylic acid)-b-poly(2,2,2-trifluoroethyl methacrylate) (PMAA-b-PTFEMA) via one-pot two-step reaction protocol. The controlled radical polymerization of MAA monomer was first carried out in pure water by using 4-cyanopentanoic acid dithiobenzoate (CADB) as chain transfer agent. Subsequently, the as-synthesized PMAA homopolymers with dithiobenzoate end-groups were employed as macro-CTA and chain-extended in situ with the hydrophobic TFEMA monomer. The reactions were carried out in 1,4-dioxane/water medium. Both the polymerization of PMAA and PTFEMA blocks showed the well controllability on the molecular weighs and distributions. It was found that the amphiphilic diblock copolymers formed the stable spherical particles via the polymerization-induced self-assembly. Meanwhile, the effect of various parameters, such as the concentration ratio of TFEMA monomer over PMAA macro-CTA, the solvent condition (different ratio of 1,4-dixane/water), and the pH, on the RAFT polymerization of TFEMA monomer were investigated in detail. Their kinetic results suggested that the propagation of TFEMA monomer on the macro-CTA was performed at the particle/water interfaces. The concentration of chain transfer agents at the interfaces determined the polymerization rate. Finally, the stability of the fluorinated polymer dispersions was also evaluated in this work.  相似文献   

3.
The use of metal‐free atom transfer radical polymerization (MF‐ATRP) was explored for the formation of diverse macromolecular structures to assess the versatility of this advanced polymerization process. In MF‐ATRP using an organic photocatalyst, 10‐phenylphenothiazine, the influences of various monomers, initiators and solvents were examined, showing that molecular weight and polydispersity could be tailored through appropriate selection of each component. Using this modern polymerization technology, metal‐free amphiphilic diblock and crosslinked copolymers were prepared successfully. Especially, demonstration of amphiphilic diblock copolymer synthesis provides a basis for further applications to biomedical materials. © 2017 Society of Chemical Industry  相似文献   

4.
Qianling Cui  Feipeng Wu  Erjian Wang 《Polymer》2011,52(8):1755-5922
A novel oxazolidine based acid-labile monomer N-acryloyl-2,2-dimethyl-1,3-oxazolidine (ADMO) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using poly(ethylene glycol) based chain transfer agent (PEG-CTA). The diblock copolymers PEG-b-PADMO were composed of hydrophilic PEG with fixed length and hydrophobic PADMO with different lengths, which formed core-shell micelles in water. Morphologies and sizes of micelles were obtained by transmission electron microscopy (TEM) and dynamic light scattering (DLS), which showed that the shapes of polymeric aggregates developed from small spherical micelles, worm-like micelles to larger size of vesicles, as the length of PADMO increased. The hydrolysis kinetics of the micelles was studied using 1H NMR, DLS and release of loaded Nile Red dye, whose rate strongly depended on pH and micellar structure. It led to the disruption of polymeric micelles and concomitant release of the guest molecules, due to the transformation of hydrophobic PADMO into hydrophilic poly(2-hydroxyethyl acrylamide) (PHEAM).  相似文献   

5.
Chen-Lung Lin 《Polymer》2005,46(22):9304-9313
We have synthesized rod-coil diblock PPQ-b-PMMA copolymers by using the versatile atom-transfer radical polymerization method and have characterized them by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The methyl ketone-terminated rod-coil diblock PMMA copolymer has a higher value of Tg, because of its syndiotactic-like structure, and a higher decomposition temperature than does the PMMA homopolymer. The presence of the PPQ block tends to retard the early decomposition of the PMMA chain. A regularly porous, honeycomb-structured film was prepared from the dichloromethane solution of the diblock copolymers under a flow of moist air. The diameters of the spherical pores can be controlled in the range from 0.8 to 3 μm by modifying both the rod-coil copolymers' relative molecular weights and the casting conditions. The wall thickness of the film is varied linearly with the relative molecular mass (Mr).  相似文献   

6.
In order to prepare well-defined pH-sensitive block copolymers with a narrow molecular weight distribution (MWD), we synthesized a pH-sensitive block copolymer via atom transfer radical polymerization (ATRP) of sulfamethazine methacrylate monomer (SM) and amphiphilic diblock copolymers by the ring-opening polymerization of d,l-lactide/?-caprolactone (LA/CL), and their sol-gel phase transition was investigated. SM, which is a derivative of sulfonamide, was used as a pH responsive moiety, while PCLA-PEG-PCLA was used as a biodegradable, as well as a temperature sensitive one, amphiphilic triblock copolymer. The pentablock copolymer, OSM-PCLA-PEG-PCLA-OSM, was synthesized using Br-PCLA-PEG-PCLA-Br as an ATRP macroinitiator. The number average molecular weights of SM were controlled by adjusting the monomer/initiator feed ratio. The macroinitiator was synthesized by the coupling of 2-bromoisobutyryl bromide with PCLA-PEG-PCLA in the presence of triethyl amine catalyst in dichloromethane. The resultant block copolymer shows a narrow polydispersity. The block copolymer solution shows a sol-gel transition in response to a slight pH change in the range of 7.2-8.0. Gel permeation chromatography (GPC) and NMR were used for the characterization of the polymers that were synthesized.  相似文献   

7.
Jinseck Kim  In Young Song 《Polymer》2011,52(17):3704-3709
Novel thiophene-based all-conjugated block copolymers consisting of 3-hexylthiophene and 3-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}thiophene were synthesized using the Grignard metathesis (GRIM) polymerization method in the presence of Ni(dppp)Cl2. Favorable transfer of the catalytic site from an electron-poor precursor to an electron-rich monomer was found to produce the block copolymer. The molecular weights of the copolymers increased slightly with increasing polymerization temperature (10.1 × 103Mn (35 °C) → 11.1 × 103Mn (55 °C)), suggesting that transit of the catalytic site was accelerated at high temperatures. Size exclusion chromatography, UV-vis and photoluminescence spectroscopies, and cyclic voltammetry measurements confirmed that the polymers were block copolymers. The blocks were associated and organized relative to one another in adjacent chains.  相似文献   

8.
Grignard metathesis (GRIM) polymerization for all-conjugated diblock copolymers comprising poly(2,5-dihexyloxy-1,4-phenylene) (PPP) and poly(3-hexylthiophene) (P3HT) blocks were systematically studied with LiCl as additive and 1,2-bis (diphenylphosphino) ethane nickel dichloride (Ni(dppe)Cl2) or 1,3-bis(diphenylphosphino) propane nickel dichloride (Ni(dppp)Cl2) as catalyst. It was found that the addition order of the monomers was crucial for the success of copolymerization. With the monomer addition in the order of phenyl and then thienyl Grignard reagents, all-conjugated PPP-b-P3HT diblock copolymers with different block ratios were successfully synthesized. In contrast, the inverted addition order only afforded a mixture containing both block copolymers and deactivated or end-capped homopolymers. Mass spectroscopic analysis indicates that the effect of the addition order of the monomers on copolymerization is attributed to the low efficiency of intramolecular Ni transfer from thiophene to phenylene units. The resulting PPP-b-P3HT diblock copolymers were characterized by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). It was found that both PPP and P3HT blocks in the copolymers were crystalline, and microphase separation between them took place, as indicated by two endothermal transitions corresponding to the melting of PPP and P3HT blocks, respectively. These unique properties may render PPP-b-P3HT diblock copolymers potential applications in optoelectronics.  相似文献   

9.
Diblock copolymers of 4-vinylpyridine (4VP) and oligoethyleneglycol methyl ether methacrylate (OEGMA) were synthesized for the first time using RAFT polymerization technique as potential drug delivery systems. Effects of the number of ethylene glycol units in OEGMA, chain length of hydrophobic P4VP block, pH, concentration and temperature on the solution behavior of the copolymers were investigated comprehensively. Copolymer chains formed micelles at pH values higher than 5 whereas unimeric polymers were observed to exist below pH 5, owing to the repulsion between positively charged P4VP blocks. The size of the micelles was dependent on the relative length of blocks, P4VP and POEGMA. Thermo-responsive properties of copolymers were investigated depending on the pH and length of P4VP block. The increase in the length of P4VP block decreased the LCST substantially at pH 7. At pH 3, LCST of copolymers shifted to higher temperatures due to the increased interaction of copolymers with water through positively charged P4VP block.  相似文献   

10.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

11.
Stella C Hadjiyannakou 《Polymer》2004,45(11):3681-3692
Linear, amphiphilic diblock copolymers based on the nonionic, hydrophilic monomer methoxy hexa(ethylene glycol) methacrylate (HEGMA) and the hydrophobic monomer benzyl methacrylate (BzMA) of different molecular weights and compositions were synthesized by group transfer polymerization. The molecular weights and comonomer compositions of these copolymers were characterized by gel permeation chromatography and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. Dynamic light scattering on aqueous solutions of the diblock copolymers indicated that all the copolymers formed aggregates whose size increased with the % w/w BzMA composition and with the overall molecular weight of the linear chains. Turbidimetry on 1% w/w aqueous copolymer solutions was used to determine the cloud points, which were found to increase with the composition in hydrophilic units and the linear chain molecular weight. After polymer characterization, xylene/water and diazinon (pesticide)/water emulsions were prepared using the above polymers as stabilizers at 1% w/w polymer concentration and at different overall organic phase/water ratios. At an organic phase/water mass ratio of 4/1, the lower molecular weight (2500 and 5000 g mol−1) diblock copolymers provided stable single-phase o/w emulsions, matching the behavior of commercially available hydrophilic Pluronics.  相似文献   

12.
Tatsuro Ouchi 《Polymer》2004,45(5):1583-1589
To develop the preparative method for poly(dl-lactide-co-glycolide)-based microspheres containing proteins, we prepared microspheres from mixture of poly(dl-lactide-co-glycolide) and polydepsipeptide-block-poly(dl-lactide) having cationic or anionic pendant groups. Since the latter amphiphilic copolymers consisting of hydrophobic poly(dl-lactide) segment and hydrophilic polydepsipeptide segment with amino or carboxyl groups could be converted to cationic or anionic block copolymers, they could act as biodegradable surfactants on the preparation of poly(dl-lactide-co-glycolide)-based microspheres by water-in-oil-in-water emulsion method. The amphiphilic block copolymers were established to stabilize primary emulsions on the preparation of microspheres by scanning electron microscopy. We investigated the effects of the addition of the block copolymers on the entrapment efficiency of protein, the release behavior of protein from microspheres and the stability of protein.  相似文献   

13.
The dendritic Fréchet‐type polyarylether 2‐bromoisobutyrates (Gn‐Br, n = 1–3) as macroinitiators for the ‘living’/controlled radical polymerization of styrene (St) and methyl methacrylate (MMA) were investigated. The atom transfer radical polymerization of St and MMA carried out with CuBr/bpy (2,2′‐bipyridine) catalyst in bulk yielded well‐defined dendritic–linear diblock copolymers (Gn–PSt and Gn–PMMA). The use of G3–PSt for the block copolymerization of MMA and G3–PMMA for the chain extension polymerization of MMA in the presence of CuBr/bpy catalyst is also described. The triblock copolymers obtained were of predetermined molecular weights and relatively low polydispersities, which indicates the living nature of the reaction system. © 2002 Society of Chemical Industry  相似文献   

14.
A novel type of amphiphilic diblock copolymer consisting of butyl methacrylate (BMA) block and glycidyl methacrylate (GMA) block (BG copolymer) was successfully synthesized via atom transfer radical polymerization (ATRP) and then utilized as a phase separator to control the porous structure of poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-co-EDMA)) monoliths. It has been found that the addition of the BG copolymer had a great impact on the polymerization of the monoliths. When the amount of the BG copolymer added into the synthesizing solution was changed, the porous structure could be varied from aggregated microglobular structure to well-defined three-dimensional (3D) skeletal structure. The porous structure was characterized by scanning electron microscope, mercury intrusion porosimetry and nitrogen adsorption measurement. Finally, the separation of proteins demonstrated its potential applications in proteome research.  相似文献   

15.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Amphiphilic diblock copolymers of polystyrene-b-poly(methacrylic acid) were synthesized by means of atom transfer radical polymerization. First, the polystyrene with a bromine atom at the chain end (PS-Br) was prepared using styrene as the monomer, 1-bromoethyl benzene as the initiator, and CuCl/2,2′-bipyridyl (bpy) as the catalyst ([1-bromoethyl benzene]/[CuCl]/[bpy] = 1:1:3). The polymerization was well controlled. Second, the diblock copolymer of polystyrene-b-poly(tert-butyl methacrylate) was synthesized also by atom transfer radical polymerization using PS-Br as the macro-initiator, CuCl/bpy as the catalyst, and tert-butyl methacrylate (tBMA) as the monomer. Finally, the amphiphilic diblock copolymer, PS-b-PMAA, was obtained by hydrolysis of PS-b-PtBMA under the acid condition. The molecular weight and the structure of aforementioned copolymers were characterized with gel permeation chromatography, infrared, and nuclear magnetic resonance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2381–2386, 2001  相似文献   

17.
We have investigated the crystallized morphology formed at each temperature Tc (20 °C ≤ Tc ≤ 45 °C) in double crystalline poly(?-caprolactone)-block-polyethylene (PCL-b-PE) copolymers as a function of composition (or volume fraction of PE blocks ?PE) by employing small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. When PCL-b-PE with ?PE ≤ 0.58 was quenched from a microphase-separated melt into Tc, the crystallization of PE blocks occurred first to yield an alternating structure consisting of thin PE crystals and amorphous PE + PCL layers (PE lamellar morphology) followed by the crystallization of PCL blocks, where we can expect a competition between the stability of the PE lamellar morphology (depending on ?PE) and PCL crystallization (on Tc). Two different morphologies were formed in the system judging from a long period. That is, the PCL block crystallized within the existing PE lamellar morphology at lower Tc (<30 °C) to yield a double crystallized alternating structure while it crystallized by deforming or partially destroying the PE lamellar morphology at higher Tc (>35 °C) to result in a significant increase of the long period. However, the temperature at which the morphology changed was almost independent of ?PE. For PCL-b-PE with ?PE ≥ 0.73, on the other hand, the morphology after the crystallization of PE blocks was preserved at every Tc investigated.  相似文献   

18.
Virginie Rejsek  Alain Deffieux 《Polymer》2010,51(24):5674-5679
The anionic polymerization of ethylene oxide (EO) initiated by lithium derivatives is extremely sluggish and only yields very low molar mass EO oligomers because of the low reactivity of lithium alkoxide species. We show here that using the monomer-activated anionic polymerization approach, one can activate the C-O-Li bonds towards EO polymerization at low temperature and in non polar media. Starting from living polystyryllithium and polyisoprenyllithium, addition of triisobutylaluminum (i-Bu3Al) in excess to lithium species triggers the propagation reaction of EO, allowing the direct synthesis, in a few hours, of poly(styrene-b-ethylene oxide) and poly(isoprene-b-ethylene oxide) diblock copolymers, with a molar mass of the PEO block up to 10 000 g/mol.  相似文献   

19.
《Polymer》2002,43(11):3217-3222
The thermoreversible gelation of blends of polystyrene-block-poly(ethylene/butylene)-block-polystyrene (SEBS) and polystyrene-block-poly(ethylene/propylene) (SEP) copolymers in n-octane was studied. The solvent is selective for the polyolefine blocks of the copolymers. The influence of the composition of the hybrid gels on the sol-gel transition and on the mechanical properties of the gels was analyzed. The sol-gel transition temperature increased with the concentration of both type of copolymers and did not depend on the hybrid gel composition for SEBS2 proportions higher than 50% at a total copolymer concentration higher than 6 wt%. The mechanical properties of the different gels were examined through oscillatory shear and compressive stress relaxation measurements. The elastic storage modulus increased with the triblock copolymer concentration but kept almost constant with the diblock copolymer concentration for SEBS concentrations higher than 5.0%. The stress relaxation rate was not dependent on the concentration of triblock and diblock copolymers, but the hybrid gels show lower stress relaxation rates than the pure SEBS2 gels. In the hybrid SEBS/SEP gels the SEP chains impart stability to the micelles or nodes of the network whereas the SEBS chains are responsible for the bridges that keep the gel as one-phase system.  相似文献   

20.
Comb-shaped graft copolymers with poly(methyl acrylate) as a handle were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP) techniques in three steps. First, copolymers of poly(styrene-co-chloromethyl styrene), poly(St-co-CMS), were prepared by RAFT copolymerization of St and CMS using 1-(ethoxycarbonyl)prop-1-yl dithiobenzoate (EPDTB) as RAFT agent. Second, the polymerization of MA using poly(St-co-CMS)-SC(S)Ph as macromolecular chain transfer agent produced block copolymer poly(St-co-CMS)-b-PMA. Third, cationic ring-opening polymerization of THF was performed using poly(St-co-CMS)-b-PMA/AgClO4 as initiating system to produce comb-shaped copolymers. The structures of the poly(St-co-CMS), poly(St-co-CMS)-b-PMA and final comb-shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号