首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Free‐radical homo‐ and copolymerization of vinyl acetate (VAc) and n‐butyl acrylate (BA) in benzene‐d6 were performed by using benzoyl peroxide as an initiator at 70°C. Polymerization kinetic was followed by online 1H NMR kinetic experiments. Significant drift in the comonomer mixture composition with reaction progress was observed. Reactivity ratios of VAc and BA were calculated by terminal unit model (TUM) as well as by simplified penultimate unit model (PUM) with rVAc = 0. It was found that copolymer composition can be described well by the TUM. “Lumped” kinetic parameter ( $ k_p .k_t^{ - 0.5} $ ) was estimated from experimental data. A good fitting between the theoretical and experimental drifts in the comonomer mixture and copolymer compositions with reaction progress was observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The effect of adding an oxygenated poison (O2, CO or H2O) to a hydrogen/nitrogen stream producing ammonia over a triply promoted (K2O, CaO, Al2O3) commercial catalyst is not unsurprisingly rapidly to poison the catalyst. However, immediately the oxygenated poison reacts with the catalyst and before total poisoning has occurred, which in these experiments took 10 min, there was an explosive release of ammonia producing concentrations in the gas phase in excess of the equilibrium value. This is thought to be due to a convulsive reorganisation of the surface of the catalyst in forming regions of an oxide overlayer, resulting in the expulsion of the standing surface nitrogen atom coverage as ammonia. However, in contradistinction to the observation of complete poisoning of the triply promoted catalyst shortly after switching the water (2.9%) into the hydrogen/nitrogen stream, when polycrystalline iron was used as the catalyst, after the initial pulse of ammonia was observed, the small quantity of water (2.9%) in the hydrogen/nitrogen stream resulted in an increased rate ( ×3) of ammonia synthesis which declined only slightly over the twenty minute duration of the experiment. The difference in behaviour between the triply promoted catalyst and the polycrystalline iron is thought to be due to the relative ease of reduction of the latter, so that submonolayer quantities of oxide can be stabilised on the surface of the polycrystalline iron. The promoting effect of this oxide overlayer is either structural or electronic; no distinction can be made from these experiments. The technique of injecting either O2 or CO into a hydrogen/nitrogen stream which is producing ammonia over promoted catalysts in quantities insufficient to cause complete poisoning and measuring the oxygen coverage of the catalyst to a measured decrease in the ammonia synthesis rate, appears to be a ready, in situ method for the determination of the active catalyst area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号