首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of propylene-ethylene (EP) and propylene-(1-butene) (BP) random copolymers with various comonomer content (2-3.1 wt% ethylene, 9.9 wt% 1-butene), were melt-mixed in Brabender internal mixer at various compositions (25/75, 50/50, 75/25). Films of copolymers and blends, as well as of a homopolymer sample (iPP), obtained by compression moulding and with different thermal history were characterized by optical and scanning electron microscopy (OM, SEM), small-angle light scattering (SALS), small- and wide angle X-ray scattering (SAXS, WAXS) and differential scanning calorimetry (DSC). It was found that all copolymers and blends studied crystallized exclusively in monoclinic α-modification forming spherulitic structure in a very broad undercooling range. The average size of spherulites is smaller in the copolymer containing 1-butene as compared to those containing ethylene or to iPP homopolymer, due to enhanced heterogeneous nucleation in BP copolymer. SEM microscopic observations demonstrated that EP and BP copolymers were miscible at all examined compositions and form homogeneous blends. Structural and morphological analysis indicated that the comonomer units are incorporated into growing crystallites in both EP and BP copolymers, while the non-crystallizing material is rejected out of the crystallites. For small concentrations of comonomer some of non-crystallizing species are pushed ahead of the front of growing spherulite into interspherulitic regions. For higher comonomer concentration these species are mostly trapped in intraspherulitic regions. Melting behavior of copolymers reflects the incorporation of comonomer into crystalline phase: melting temperature and crystallinity degree decrease in copolymers and blends as compared to plain iPP.  相似文献   

2.
K. Jeon  R. Quijada 《Polymer》2009,50(3):832-822
Isothermal crystallization kinetics and properties related to the crystalline structure of four series of random propylene 1-alkene copolymers have been comparatively studied in this work. Comonomers studied include ethylene, 1-butene, 1-hexene and 1-octene in a concentration range up to 21 mol%. All copolymers were synthesized with the same metallocene catalyst to provide an equivalent random distribution and a similar content of stereo and regio defects within the series. This has ensured that differences in crystallization kinetics and in crystalline properties of copolymers with matched compositions reflect the affinity of the comonomer type for co-crystallization with the propene units, and the effect of content and type of co-unit in the development of the crystalline structure. In the nucleation-driven crystallization range, that is for Tcs > Tc max, the values of the rate follow the sequence PB > PE > PH = PO for comonomer contents <13 mol%, and PB > PE > PH > PO for >13 mol% comonomer. These trends in overall crystallization are guided by differences in undercooling due to a similar progression of the degree of participation of the comonomer in the crystalline lattice. The variation of the rates at Tcs < Tc max follows the melt segmental dynamics driven by differences in Tg, especially at the highest co-unit contents, resulting in a reverse rate sequence for PHs and POs >15 mol%, i.e., PB > PE ∼ PO > PH. In addition to crystallization kinetics, a comparative polymorphic analysis and unit cell expansion, crystalline morphology, and melting behavior have been instrumental in resolving the partitioning of the four types of co-units between crystalline and non-crystalline regions. 1-Butene units participate at the highest level followed by the ethylene units, as demonstrated by solid-state NMR. However, both units are defects that hinder crystallization, as given by the decreasing rates, decreased levels of crystallinity and lowered melting temperatures with increasing co-unit content. All crystalline properties of PHs and POs conform to a rejection model of the 1-octene units from the crystals in the whole compositional range, and rejection of the 1-hexene units for PH <13 mol%, a conclusion also supported by NMR. The ability of PH >13 mol% to pack comonomer-rich sequences into a stable trigonal lattice leads at Tcs > Tc max to an increased number of crystallizable sequences, and to faster crystallization rates than for matched PO copolymers.  相似文献   

3.
Mechanical properties and adhesion phenomena of isotactic polypropylene/wollastonite/metallocene propylene‐ethylene copolymers (iPP/W/EPR) composites were studied as a function of metallocene propylene‐based copolymers content from 0 to 20 vol%. The composites with different surface treated wollastonites and two types of EPR have shown similar behavior of most mechanical properties except elongation at break and impact strength respective of the difference in some characteristics of used EPR elastomers. The increase and the difference in elongation at break could be explained by renewed spherulitic morphology of the iPP matrix. Stronger interactions between EPR‐1 and two used types of wollastonites than between EPR‐2 and corresponding wollastonites concluded from the surface properties led to the difference in impact strength behavior. The determined mechanical properties confirm the assumption coming out of structural investigations that metallocene EPR elastomers are rather efficient impact modifiers than encapsulation compatibilizers for the iPP/wollastonite composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

4.
Wen-Jun Wang  Hong Fan  Shiping Zhu 《Polymer》2004,45(16):5497-5504
The dynamic mechanical and rheological properties of five long-chain branched (LCB) and three linear ethylene/propylene (EP) copolymers were investigated and compared using a dynamic mechanical analyzer (DMA) and an oscillatory rheometer. The novel series of LCB EP copolymers were synthesized with a constrained geometry catalyst (CGC), [C5Me4(SiMe2NtBu)]TiMe2, and had various propylene molar fractions of 0.01-0.11 and long-chain branch frequencies (LCBF) of 0.05-0.22. The linear EP copolymers were synthesized with an ansa-zirconocene catalyst, rac-Et(Ind)2ZrCl2 (EBI), and contained similar levels of propylene incorporation as the CGC copolymers, but no LCB. In dynamic mechanical analysis, the dynamic storage moduli (G′) and loss moduli (G″) of the copolymers decreased with an increase of propylene molar fraction. The α- and β-transitions of the CGC copolymers were overlaid with each other. High damping (tan δ) values were found with the CGC copolymers at temperatures below 0 °C. In oscillatory rheological analysis, compared to the linear EBI counterparts, the LCB CGC copolymer melts showed higher zero shear activation energies, broader plateaus of δ and larger elastic contributions, which are essential characteristics of LCB polymers. It was found that the long chain branching was the determining factor in controlling rheological properties of the polymer melts while the short chain branching from propylene incorporation played a decisive role in affecting dynamic mechanical properties. This work represents the first rheological evidence of LCB in EP copolymers synthesized with CGC.  相似文献   

5.
Ian L. Hosier  J.S. Lin 《Polymer》2004,45(10):3441-3455
Four sets of propylene based random copolymers with co-units of ethylene, 1-butene, 1-hexene and 1-octene, and a total defect content up to ∼9 mol% (including co-unit and other defects), were studied after rapid and isothermal crystallization. Etched film surfaces and ultramicrotomed plaques were imaged so as to enhance contrast and minimize catalyst and co-catalyst residues. While increasing concentration of structural irregularities breaks down spherulitic habits, the formation of the gamma polymorph has a profound effect on the lamellar morphology. Lamellae grown in the radial axis of the spherulite and branches hereon are replaced in γ-rich copolymers with a dense array of short lamellae transverse or tilted to the main structural growth axis. This is the expected orientation for γ iPP branching from α seeds. Spherulites are formed in copolymers with non-crystallizable units (1-hexene and 1-octene) up to ∼3 mol% total defect content and were observed up to ∼6 mol% in those with partially crystallizable comonomers (ethylene and 1-butene). However, lamellae were observed in all the copolymers analyzed, even in the most defective ones, highlighting the important role of the gamma polymorph in propagating lamellar crystallites in poly(propylenes) with a high concentration of defects. Long periods measured from AFM and SAXS are comparatively analyzed.  相似文献   

6.
Polyether(ester-amide)s (PEEA) segmented block copolymers with di- and tri-functional poly(propylene oxide)s and amide segments were synthesized and the elastic properties studied. The difunctional polyether used had a molecular weight of 2300 g/mol end capped with 20 wt% ethylene oxide. The trifunctional polyether had a molecular weight of 6000 g/mol of which each arm had a molecular weight of 2000 g/mol. The concentration of the trifunctional polyether of the total ether content was varied from 0 to 40 mol%. The amide segments were of a non-crystallizing type with a content in the copolymers of 27 wt%. Phase separation occurred, therefore, only by liquid-liquid demixing. The thermal mechanical properties of the polymers were analyzed by dynamic mechanical thermal analysis and the elastic properties by compression set and tensile set. The materials are model blockcopolymers for the more complex chemically crosslinked polyether(urethane-urea)s (PEUU).With increasing amounts of chemical crosslinks the glass transition temperature and the modulus did not change noticeably. However, the elastic behavior as measured by compression set and tensile set, improved dramatically. Giving time all materials recovered completely and with increasing amount of chemical crosslinks this recovery happened faster. An explanation is given for the (viscoelastic) deformation in these copolymers.  相似文献   

7.
The crystallization, the morphology and the thermal behaviour of thin films of isotactic polypropylene (iPP) blended with elastomers such as random ethylene-propylene copolymers (EPM) with different ethylene content and polyisobutylene (PiB) were investigated by means of optical microscopy, differential scanning calorimetry and wide angle X-ray diffractometry. During crystallization EPM copolymers are ejected on the surface of the film forming droplet-like domains. A different morphology is observed in iPP/PiB blends. For these mixtures the elastomers separate from the iPP phase forming spherical domains that are incorporated in the iPP intraspherulitic regions. Both EPM and PiB elastomers act as nucleant agents for iPP spherulites. This nucleation efficiency is strongly dependent on the chemical structure and molecular mass of the elastomers. The addition of EPM causes an elevation of the observed and equilibrium melting temperature of iPP. This unusual effect may be accounted for by assuming that the elastomers are able to extract selectively the more defective molecules of iPP. The depression of the growth rate of spherulites and the observed and equilibrium melting temperature of iPP, noted in iPP/PiB blends, suggests that these two polymers have a certain degree of compatibility in the melt.  相似文献   

8.
Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane-parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane-parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core-shell morphology) because of constitution similarity of P-E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

9.
Sequential xylene extraction (SXE) in combination with scanning electron microscopy (SEM) and high temperature solvent gradient interaction chromatography (HT-SGIC) were employed for the detailed visualisation and understanding of the evolution of phase morphology in heterophasic ethylene-propylene copolymer (HEPC) particles. The study focused on sequentially extracting the soluble EP rubber phase and EP block or segmented copolymers by SXE at various temperatures. Major changes in the particle morphology (significant increase in both size and number of voids in the particles) after SXE were revealed using SEM imaging. These void structures are believed to result from the amorphous phase (EPR) being removed during the xylene extraction which was further confirmed by differential scanning calorimetry (DSC), high temperature 13C NMR spectroscopy and HT-SGIC. The extractables obtained at 100 °C were found to be a mixture of EP random copolymers, semi-crystalline EP (block or segmented) copolymers, as well as iPP and PE homopolymers. Upon complete dissolution of the particles by SXE at 100 °C, significant amounts of the EP rubber fractions were obtained. Our results show a very heterogeneous distribution of EPR components with varying chemical compositions in HEPC particles produced by dual-reactor processes. For the layered structure observed from this study, truly amorphous EP rubber was found in the outer most regions followed by continuous regions of EP random copolymers having increasing ethylene contents. Propylene-rich EPR, extracted at temperatures of 100 and 130 °C, was observed as the inner EPR phase. Semi-crystalline EP (segmented or block copolymer) and PE homopolymer were detected as intermediate structures between these two EPR regions, inside and outside the pores of the iPP particles. Based on these findings a modified multi-layered core–shell structure was proposed. The results obtained by the proposed SXE fractionation method and its combination with various analytical approaches are found to be very effective for the investigation of the phase composition present in HEPC particles. The present approach is general and can also be used for other multiphase semi-crystalline polyolefins.  相似文献   

10.
A series of novel hexene‐1–propylene random copolymers with isotactic sequence of propylene was synthesized with a MgCl2‐supported Cr(acac)3 catalyst. The molecular weight distribution of copolymers and homopolymers was considerably narrower than that of typical polyolefins produced by heterogeneous Ziegler–Natta catalysts. The crystallizability of the copolymers having a propylene‐unit content of more than 50 mol % drastically decreased with decreasing propylene‐unit content, and the copolymers with a propylene content of less than 50 mol % were completely amorphous. In the present novel type of random copolymers with crystallizable and noncrystallizable units, a single glass transition was observed between pure polypropylene and polyhexene‐1, and a major component was found to govern the final morphology and the mechanical characteristics. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2949–2954, 2004  相似文献   

11.
The thermal properties and morphology development of isotactic polypropylene (iPP) homopolymer and blended with low molecules weigh atactic polypropylene (aPP) at different isothermal crystallization temperature were studied with differential scanning calorimeter and wide-angle X-ray scattering. The results of DSC show that aPP is local miscible with iPP in the amorphous region and presented a phase transition temperature at Tc=120 °C. However, below this transition temperature, imperfect α-form crystal were obtained and leading to two endotherms. While, above this transition temperature, more perfect α- and γ-form crystals were formed which only a single endotherm was observed. In addition, the results of WAXD indicate that the contents of the γ-form of iPP remarkably depend both on the aPP content and isothermal crystallization temperature. Pure iPP crystallized was characterized by the appearance of α- and γ-forms coexisting. Moreover, the highest intensity of second peak, i.e. the (0 0 8) of γ-form coexisting with (0 4 0) of α-form, and crystallinity were obtained for blended with 20% of aPP, the γ-form content almost disappeared for iPP/aPP blended with 50% aPP content. Therefore, detailed analysis of the WAXD patterns indicates that at small amount aPP lead to increasing the crystallinity of iPP blend, at larger amount aPP, while decreases crystallinity of iPP blends with increasing aPP content. On the other hand, the normalized crystallinity of iPP molecules increases with increasing aPP content. These results describe that the diluent aPP molecular promotes growth rate of iPP because the diluent aPP molecular increases the mobility of iPP and reduces the entanglement between iPP molecules during crystallization.  相似文献   

12.
In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN content on CO2 absorption and subsequent viscosity reduction. Our previous report focused on the absorption of CO2 in a relatively thermally stable 65 mol% AN copolymer. In this study, the ability for CO2 to absorb in AN copolymers containing 85-98 mol% acrylonitrile was determined, and subsequent viscosity and equivalent processing temperature reductions were evaluated. Eighty five and 90 mol% acrylonitrile/methyl acrylate (AN/MA) copolymers were found to absorb up to 5.6 and 3.0 wt% CO2, corresponding to reductions of Tg of 37 and 27 °C, and subsequent viscosity reductions of 61 and 56%, respectively. CO2 absorption in these copolymers was found to occur immediately, in contrast to the time dependent absorption observed in the 65 mol% copolymer. An Arrhenius scaling analysis was used to determine the equivalent reductions in processing temperature resulting from the viscosity reductions, and reductions of up to 25 and 9 °C were observed for the 85 and 90 mol% AN copolymers. Based on the specific conditions used for absorption, no significant CO2 uptake was observed for AN copolymers containing greater than 90 mol% acrylonitrile. Higher temperatures than those used here may be required to absorb CO2 into AN copolymers containing greater than 90 mol% AN.  相似文献   

13.
Yan Wang  Song Hong  Chenggui Zhang 《Polymer》2009,50(2):636-6927
Shish-kebab morphologies were observed with relatively low shear rate and low temperature in the phase-separated isotactic polypropylene (iPP) and high density polyethylene (HDPE) blend. Both components are crystallizable polymers. In our experiments, relatively low shear rates and low temperatures were used, so that the entangled network chains cannot be broken up or disentangled, and the shish nuclei must be formed from oriented and stretched network chains instead of a bundle of pulled-out chains. The effects of shear rate, shear time and temperature on the formation and morphology of shish-kebabs were studied by in situ optical microscopy and shear hot stage under various thermal and shear histories. Optical microscopic measurement showed that the length of iPP cylindrites is much longer than the dimension of phase domains, which implies that iPP cylindrites grow through both iPP and HDPE phase domains. An unexpected ‘core-shell’ structure was observed in the melting procedure, which could be explained by the difference of crystallinity between ‘core’ and ‘shell’. It is most important that two kinds of shish-kebabs, the interface morphology and transcrystallites were observed by scanning electron microscopy (SEM). SEM observation also revealed that the width of iPP shish is about 1-2 μm and the width of HDPE shish is about 100 nm. The difference in the shish width probably resulted from the lower molecular weight, higher polydispersity, less inter-chain interaction force, and faster nucleation and growth rate of HDPE relative to the iPP chains.  相似文献   

14.
The crystallization morphologies and mechanical behaviors of iPP/sPP blends and the corresponding fibers were investigated in the present work. For all the investigated iPP/sPP blends, the starting crystallization temperature of sPP during cooling process was significantly increased with increasing iPP content. The iPP/sPP blends are strongly immiscible at the conventional melt processing temperatures, in consistence with the literature results. As isothermally crystallized at 130 °C, sPP still keeps melt state, while iPP component is able to crystallize and the spherulites become imperfect accompanied by decreasing of the crystallite size as sPP content increases. The addition of sPP decreases the crystallinity of iPP/sPP blends and fibers. The storage modulus, E′, of the iPP/sPP blends is higher than that of sPP homopolymer in the temperature range from −90 to 100 °C. The iPP/sPP fibers can be prepared favorably by melt-spinning. As sPP content exceeds 70%, the elastic recovery of the iPP/sPP fibers is approximately equal to that of sPP homopolymer fiber. The drawability of the as-spun fiber of iPP/sPP (50/50) is better than that of sPP fiber, which improves the fiber processing performance and enhances the mechanical properties of the final product. The drawn fiber of sPP presents good elastic behavior within the range of 50% deformation, whereas the elastic property of the iPP/sPP (50/50) fiber slightly decreases, but still much better than that of iPP fiber.  相似文献   

15.
Mass transfer resistance in the production of high impact polypropylene (hiPP) produced by a two-stage slurry/gas polymerization was investigated by field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. It is found that the formation of ethylene-propylene copolymer (EPR) phases in polypropylene (iPP) particle produced in the first stage slurry polymerization exhibits a developing process from exterior to interior. During the early stage of ethylene-propylene copolymerization, with lower content of copolymerized ethylene (7.4 mol%), the EPR phases occur only in the external layer of the particle, while at the later stage of the copolymerization with higher content of copolymerized ethylene (26.7 mol%), the elastomer phases distribute uniformly in the whole particle. This phenomenon is due to an effect of mass transfer resistance. The origin of mass transfer resistance is loosely agglomerate inclusions of low tacticity polypropylene within the semi-filled micropores inside the iPP particle. It is the inclusions inside the micropores that resist the diffusion of ethylene/propylene comonomers into the particle.  相似文献   

16.
A series of high molecular weight, readily soluble copolymers of 9,9-dioctylfluorene with pyridine (less than or equal to 50 mol%) are synthesized by Suzuki polycondensation. Copolymers emit blue light and exhibit high PL efficiency. PL efficiencies show the maximum at 3,5-pyridine content of around 30 mol% in the copolymer. With further the increase of meta-linkage contents, PL efficiencies decrease rapidly to15% for alternating copolymer. Cyclic voltammetry investigation reveals that LUMO levels of copolymers increase with the increase of pyridine content. The introduction of pyridine unit at 3,5-position into polyfluorene backbone significantly depresses the excimer formation. The intensity of excimer emission decreases with the increase of 3,5-pyridine contents. Narrow and pure blue EL emission is obtained for copolymer with pyridine content of 40 mol%. External quantum efficiency is moderately high (0.4-0.5%) for such a pure blue emitter. The threshold voltages of devices from copolymers with the pyridine content of less than 40 mol% are low in the range of 5-6 V based on the device configuration: ITO/PEDOT/polymer/Ba/Al. The results indicate that fluorene-co-3,5-pyridine copolymers are promising blue-emitting electroluminescent materials.  相似文献   

17.
Surface crystalline structure in isotactic polypropylene (iPP) films was explored by in-plane grazing incidence X-ray diffraction measurement. Apparent crystallinity in the surface region was lower than the bulk one. After an etching treatment with a droplet of potassium permanganate solution, a clear crater was formed at the surface, and the step height between etched and intact regions was approximately 3 nm. This means that the iPP surface was covered with 3 nm thick amorphous layer. Then, surface molecular motion in the iPP films was examined by lateral force microscopy. Surface αa-relaxation process arisen from the segmental motion was observed at about 250 K, and its apparent activation energy was 230±10 kJ mol−1. The both were lower than the corresponding bulk values, indicating that surface molecular motion is more active than the bulk one even in the semi-crystalline iPP films. An iPP film with 1.5 nm thick surface amorphous layer was prepared. In this case, the enhanced mobility was still observed at the surface, but the extent of the enhancement was not remarkable as that for the iPP film with 3 nm thick surface amorphous layer. These results imply that surface mobility is affected by the presence of underneath crystalline phase, if the surface amorphous layer is thin enough.  相似文献   

18.
The influence of the addition of two ethylene-propylene random copolymers (EPM) with different composition on the mechanical properties, thermal behavior and overall morphology of high density polyethylene (HDPE)/isotactic polypropylene (iPP) blends, was investigated on extruded samples. The experimental data showed that the morphology of binary HDPE/iPP blends is drastically modified by these additives and that the ultimate mechanical properties of these mixtures are greatly improved. A reasonable explanation of these results can be ascribed to the fact that these copolymers can act as “compatibilizing agents” in the amorphous regions of the two semicrystalline homopolymers. The extent of such effects is dependent on the chemical structure and/or on the molecular mass of the added copolymer as well as on the HDPE/iPP blend compositions.  相似文献   

19.
Blends of linear polyethylene (PE) and isotactic polypropylene (iPP) with different average molar masses and a series of ethylene‐propylene (EP) copolymers with different chemical composition as well as blends of PE, Ipp, and EP copolymers were separated using a carbon‐column packing (Hypercarb®) and gradients of 1‐decanol or 2‐ethyl‐1‐hexanol → 1,2,4‐trichlorobenzene (TCB). The separation is based on full adsorption of linear PE on the carbon sorbent at temperature 160°C. However, iPP is not adsorbed and elutes in size exclusion mode. The random EP copolymers have been adsorbed in the column packing and separated according to their average chemical composition after application of the gradient starting with alcohol and ending with pure TCB. The elution volumes of the copolymers depended linearly on the average concentration of ethylene in the copolymers. The HPLC elution profiles were correlated with the CRYSTAF elution profiles. In contrast to CRYSTAF, fully amorphous polyolefin samples were separated with the high‐temperature adsorption liquid chromatography. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
《Polymer》2003,44(24):7281-7289
A series of poly(ethylene terephthalate-co-ethylene 5-sodiosulfoisophthalate) copolyesters containing from 1 up to 50 mol% of sulfonated units was prepared by melt polycondensation from ethylene glycol and mixtures of dimethyl terephthalate and dimethyl 5-sodiosulfoisophthalate. The resulting copolymers had a random microstructure and contained oligo(ethylene glycol) units in amounts increasing with the content in sulfonated isophthalate units. Copolyesters with more than 20 mol% of 5-sodiosulfoisophthalic units were amorphous and easily soluble in water. The hydrodegradability of the copolyesters was very high as compared to poly(ethylene terephthalate), and increased with the content in sulfonated units. It was demonstrated that the susceptibility to acidic hydrolysis of these copolymers is mainly due to the presence of the sodium sulfonate groups, the influence of the oligo(ethylene glycol) units in this regard being noticeable but limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号