首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports off-lattice Monte Carlo simulations of highly-branched comb homopolymers weakly adsorbed on a flat, featureless surface showing only covolume and dispersion interactions with the adsorbate. A minimal coarse-grained model, described by hard spheres connected by harmonic springs, was employed. The interaction energy of the adsorbed combs and linear chains is first discussed as a function of the molecular mass and of the number of beads in contact with the surface. The molecular size is then investigated as a function of backbone length and branching density at a fixed arm size. The apparent swelling exponents of the adsorbed combs are larger than those of the corresponding linear chains, and much larger than that of the free molecules. This result indicates a surface-induced stiffening of the comb backbone, further studied through the persistence length lpers. It is found that lpers increases upon adsorption over the free-molecule value, more so the larger is the branching density. Finally, the thickness of the adsorbed layer, the surface-induced molecular anisotropy and the molecular aspect ratio are investigated as a function of branching density and molecular mass.  相似文献   

2.
Monte Carlo simulations were used to investigate the conformational and electrical properties of isolated weak polyelectrolytes in the presence of an oppositely charged particle. Titrations curves were calculated to get an insight into the role of pH on the degree of ionization and conformation of isolated chains. The effect of ionic concentration and polyelectrolyte length on the titration curves was also investigated. The complex formation between the isolated polyelectrolyte and the oppositely charged particle was considered at different pH and ionic concentration values. The adsorption/desorption limit was calculated and the effect of the polyelectrolyte adsorption on the titration curves investigated. In particular, it was demonstrated that the presence of an oppositely charged particle clearly increases the degree of ionization of the weak polyelectrolyte and that ionic concentration plays a subtle role by increasing/reducing both the attractive energy between the polyelectrolyte and the particle and the polyelectrolyte degree of ionization.  相似文献   

3.
The properties of macromolecules in presence of an interface could be considerably modified due to confinement effects. When phase separations are performed in nanoconfined domains, the concurrent presence of high‐energy interfaces and conformational entropy constraints of the macromolecules causes profound differences in polymer aggregation behavior. Here, thermodynamics of a polymer chain in solution, confined by a three‐dimensional cubic interface, is studied by means of Monte Carlo method, focusing on the chain conformational entropy penalty arising from the excluded volume effects. The presented method might become a general tool for a preliminary evaluation of the thermodynamic effects due to the confinement of a polymer system. Further, the interface effects on Thermally Induced Phase Separation (TIPS) of polymer solutions, confined by High‐Pressure Homogenization, are experimentally studied, regarding final morphologies. It is confirmed how peculiar polymer morphologies are obtained only when the TIPS develops under nanoconfinement degrees above a threshold one. © 2017 American Institute of Chemical Engineers AIChE J, 64: 416–426, 2018  相似文献   

4.
Strategies for the utilization of phase separation to generate ordered pattern in polymer thin film are reviewed. First, the fundamental theory and factors influencing phase separation in polymer thin film are discussed. That is followed by a discussion of the formation of ordered patterns induced by phase separation in polymer thin films under the influence of a chemical heterogeneous substrate, convection or breath figures. The mechanisms and the conditions for well-ordered structures generated by phase separation are then discussed to show that multi-scaled/multi-component patterns, stimuli-responsive patterns may be developed by controlling the preparation conditions or exposing the sample to different environments more complex structures. Finally, applications of fabricated patterns in pattern generation and reproduction, antireflecting coating, catalysis, bio-chips and optoelectronics are also discussed.  相似文献   

5.
The phase separation behavior of polymer blend thin films of 100-150 nm was studied using differential AC Chip calorimetry. By taking advantage of the low sensor and sample mass inherent to chip calorimetry, a new methodology based on temperature jumps was developed. This methodology allowed the construction of the state diagram of polymer blend thin films as evidenced for two model systems (PVME/PS and PVME/Phenoxy) displaying a lower critical solution temperature behavior.The state diagram in thin films was compared to the one obtained in bulk using Modulated Temperature DSC. In comparison with bulk, a lower phase separation temperature and a broadening of the homogeneous glass transition temperatures is observed for both model systems. This might be an indication of a surface induced ‘destabilization’ by composition gradients which are not present in bulk.  相似文献   

6.
A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature.  相似文献   

7.
Samuel Edgecombe 《Polymer》2008,49(7):1981-1992
The swelling and mechanical properties of various interpenetrating polymer networks (IPNs) were studied. Six networks made from permutations of a moderately crosslinked polyelectrolyte network (ref), a moderately crosslinked neutral polymer network (net1), and a highly crosslinked polyelectrolyte network (net2) were first swollen in water and structural properties such as end-to-end chain lengths and radial distribution functions were compared with the component networks' equilibrium properties. The swelling of composite IPNs was discussed in terms of a balance between the osmotic pressure due to mobile counterions and the restoring force of the network chains, which act in parallel to counteract the osmotic swelling. For the ref-net2 system, the strong stretching of net2 chains increases the network restoring force and the further swelling due to the counterions is suppressed. The swollen networks were then uniaxially stretched, and equilibrium stress-strain plots were obtained up to high extension ratios. The equilibrium volume decreased upon uniaxial extension, and the elastic moduli of IPNs of the A-A type were slightly greater than that of their respective single networks.  相似文献   

8.
The conformational properties of Hybrid Dendritic Star copolymers (HDS) which combine the characteristics of dendrimers with those of flexible polymers are studied, for the first time, by means of Off Lattice Monte Carlo simulations. Using the efficient Pivot algorithm we calculate the asphericity and the acylindricity of the whole molecule for various solvent conditions and different characteristics of dendritic and star chains. Moreover, the effects of the number and the length of star branches on the conformation of the dendritic part are also studied. By considering the HDS copolymers as ‘hairy spheres’ we have calculated the star monomer distribution profiles. The shapes of the profiles are compared with previous Monte Carlo results.  相似文献   

9.
高分子抑制蛋白质聚集的动态Monte Carlo模拟   总被引:2,自引:2,他引:2  
张麟  卢滇楠  刘铮 《化工学报》2008,59(1):153-159
抑制聚集是蛋白质产品下游加工特别是制剂过程中的重要问题。本文采用动态Monte Carlo方法和二维晶格HP蛋白质模型,通过建立高分子-蛋白质复合物微观结构和蛋白质构象概率分布来研究高分子对蛋白质聚集行为的影响。结果表明,高分子的疏水性、分子量及其浓度对于蛋白质的聚集行为有显著的影响。当其疏水性适宜时,高分子可富集在蛋白表面疏水位点,强化蛋白质分子在水溶液中的分散,从而抑制聚集。高分子还可缠绕在蛋白质分子表面形成限制性空间从而稳定蛋白质的天然结构。  相似文献   

10.
The properties of a thin polymer film can be significantly affected by the presence of a penetrant. This can have potential implications for many technological applications, such as protective and functional coatings, sensors, microelectronics, surface modification and membrane separations. In situ ellipsometry is a powerful technique for the characterization of a film in contact with a penetrant. The main advantages of ellipsometry include the very high precision and accuracy of this technique, combined with the fact that it is non-intrusive. Recent advances in the speed and automation of the technique have further expanded its application.This article provides an overview of the research that has been done with in situ UV–vis ellipsometry on penetrant-exposed polymeric films, in the last 15–20 years. The focus is predominantly on films that are not attached covalently to a substrate. Polymer brushes and grafts are therefore excluded. This review addresses a variety of topics, covering instrumental aspects of in situ studies, approaches to data analysis and optical models, reported precision and repeatability, the polymer-penetrant systems that have been studied, the kind of information that has been extracted, and other in situ techniques that have been combined with ellipsometry. Various examples are presented to illustrate different practical approaches, the consequences of the optical properties of the ambient, and the various ways that have been employed to bring polymer films in contact with a penetrant, ranging from simple ex situ-like configurations (i.e., drying studies) to complex high pressure cells. The versatility of in situ ellipsometry is demonstrated by examples of the distinctive phenomena studied, such as film dilation, penetrant diffusion mechanisms, film degradation, electrochemical processes, and the broad variety of polymer-penetrant systems studied (glassy and rubbery polymers, multilayer stacks, etc.). An outlook is given on possible future trends.  相似文献   

11.
Massimo Mella  Lorella Izzo 《Polymer》2010,51(15):3582-3589
Chemical and physical properties of polymeric species in solution strongly depend on their structure, which can be modulated by covalently linking substituents of different solubility. In this work, the effect of changing the interaction strength and fractional loading of hydrophobic substituents on semi-flexible hydrophilic polymers of varying chain length is studied by means of Monte Carlo simulations and coarse grained model potentials. The latter are chosen in order to provide a more factual representation of a chain in diluted solution, introducing substituent flexibility and realistic torsional and bending potentials. Upon increasing the number and the interaction strength of the substituents, our results indicate a less steep rise of the chain gyration radius and “end to end” distance for the chain length than predicted for an unsubstituted polymer in an almost good solvent. Moreover, a “disordered to compact” structural transition appears. In parallel, the formation of hydrophobic nuclei and the consequent appearance of flexible polymer loops grafted to the semi-rigid cores is witnessed. The core formation resembles a nucleation phenomenon, where the change in the interaction between the substituents modulates the free energy surface for the aggregation process similarly to the change in chemical potential. Interestingly, it has been found that a single chain containing a sufficiently high number of interacting substituents may give rise to the formation of multiple cores, suggesting that the chain stiffness may play a role in defining the structure of the free energy minimum.  相似文献   

12.
Liang Cui 《Polymer》2005,46(14):5334-5340
A transition of morphology from island-like structure to disordered and ordered holes on the surface of polystyrene (PS) and poly(2-vinylpyridine) (PVP) blend films were observed with the increase of humidity. At appropriate weight ratio of PS/PVP and PS molecular weight, when humidity reached to a critical value, the hexagonal arrays of holes formed for PS/PVP blend films due to ‘breath figures’ stabilized by PVP with its strong hygroscopic characteristics during phase separation.  相似文献   

13.
Takashi Yamamoto 《Polymer》1983,24(8):943-948
The Monte Carlo method is applied to polymer crystals of idealized linear chain molecules of 30 carbon atoms, and the unharmonic, large-amplitude, oscillations and the subsequent conformational disorders of the chains are investigated. A crystalline field that confines the chain is treated by the molecular field approximation, and assumed to be cylindrical in this work. A production type simulation is adopted taking into account rigorous statistical weights for each sample conformation. Both the rotational isomeric model and the continuous rotation model of chain conformation are considered. By averaging over 104–8 × 104 chains, mean-square end-to-end distance, fractions of gauche and trans states and a detailed distribution of internal rotation angle are obtained. The effects of temperature and pressure on the conformation of the chain in the crystals are also simulated.  相似文献   

14.
Abstract

4-[4-(1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl]methylbenzophenone (ITBP) and 4[4-(1H-1,2,4-triazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl]methylbenzophenone (TTBP) are synthesized as new heterocyclic compounds of the triazole derivative family and tested successfully as potential inhibitors for MS in 1?M H2SO4 corrosive medium by using gravimetric analysis, electrochemical impedance spectroscopy, potentiodynamic polarization, and energy dispersive X-ray spectroscopy (EDX). Polarization curves show that the tested inhibitors are mixed-type inhibitors. Scanning electron microscopy (SEM) affirmed the existence of an adsorbed film on the steel surface. Monte Carlo simulations were in excellent agreement with the experimental tests.

Abbreviation: PDP: Potentiodynamic Polarization; EIS: Electrochemical impedance spectroscopy; DFT: Density functional theory; MC: Monte Carlo  相似文献   

15.
AC chip calorimetry is used to study the phase separation behavior of 100 nm thin poly(vinyl methyl ether)/poly(styrene) (PVME/PS) blend films. Using the on-chip heaters, very short (10 ms-10 s) temperature jumps into the temperature window of phase separation are applied, simulating laser heating induced patterning. These temperature pulses produce a measurable shift in the glass transition temperature, evidencing phase separation. The effect of pulse length and height on phase separation can be studied. The thus phase separated PVME/PS thin films remix rapidly, in contrast with measurements in bulk. AC chip calorimetry seems to be a more sensitive technique than atomic force microscopy to detect the early stages of phase separation in polymer blend thin films.  相似文献   

16.
This paper presents a computational conformational study of side‐chain liquid‐crystal polymers to predict the optical and liquid‐crystalline properties of a series of polyepicholorohrdrin, polyacrylate, poly(methyl acrylate), and polystyrene‐based side‐chain polymers using a Monte Carlo simulation method. Some of the simulated side‐chain polymers were synthesised by chemical modification or polymerisation. The predictive capability of the orientational order parameter has been utilised to predict the liquid‐crystalline isotropic transition temperature of the investigated polymers, which was used to infer the type of distribution in the synthesised polymers. The predictive possibilities of this criterion are explored in the estimation of the nematic–isotropic transition temperatures of the simulated polymers. Evidence is presented to suggest that for side‐chain liquid‐crystalline polymer molecules the nematic to isotropic transition occurs when the order parameter reaches a value of 0.43 according to Maier–Saupe mean‐field theory. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
For the blends of chlorinated polyethylene and copolymer of ethylene with vinyl acetate, the effect of the introducing filler (fumed silica) on the phase behavior of the blends was investigated. It was found that introducing filler in polymer blends depending on its amount lead either to the increase or to the decrease in the temperature of phase separation. At the filler concentration where both components transit into the state of a border layers, the phase separation temperature increases. This effect was explained by the change of the total thermodynamic interaction parameter in the ternary system polymer-polymer-filler. At lower concentration of a filler, the possible effect is the redistribution of the blend components according to their molecular masses between filler surface (in the border layer) and in the bulk that may diminish the phase separation temperature.Effect of the filler on the phase behavior was explained by the simultaneous action of two mechanisms: by changing the thermodynamics of interaction near the surface due to selective adsorption of one of the components and by the redistribution of components according to their molecular masses between the boundary region (near the surface) and in the matrix.The measurements of the kinetics of phase separation and calculation of the parameters of the activation energy are in agreement with proposed mechanisms.  相似文献   

18.
Hideyuki Kihara  Toshiaki Miura 《Polymer》2005,46(23):10378-10382
A hydrogen-bonded LC polymer was prepared by photopolymerization of an LC blend composed of 4-(6-acryloyloxyhexyloxy)benzoic acid (A6OBA) and 4-hexyloxy-4′-cyanobiphenyl (6OCB), containing small amounts of an inhibitor and photoinitiator, at two different temperatures in an isotropic phase. To elucidate the factors determining the morphology of the obtained polymer (poly(A6OBA)), we chose two irradiation temperatures: one in the LC temperature range of the polymer, the other in the isotropic range. We investigated structures of the polymers by optical microscopy and scanning electron microscopy. SEM images showed that the film obtained at the lower temperature consisted of randomly extended fibers having a diameter of ca. 1.0 μm and some branches, whereas the film prepared at the higher temperature was composed of polymer particles with a diameter ca. 1.5 μm. By comparing these results with those of an earlier experiment in which we obtained macroscopically oriented LC fibers by photopolymerization under the LC phase of the blend, we infer the following; (i) the presence of an LC phase in the resulting polymer itself during photopolymerization is necessary for it to form fibrous morphology and (ii) the LC ordering field present prior to photopolymerization is not indispensable for the fibrous morphology but it is for the macroscopic orientation and reduction of the branches in the fibers.  相似文献   

19.
Structure and dynamics of polymer in solvent solution is an important area of research since the functional properties of polymer are largely dependent on the morphology of the polymers in solution. This structure related properties are especially important in case of surface science where the phase-separated morphology in the micro/nano scale dictates the properties of the product. Modeling polymers in solution is an efficient way to determine the morphology and thus the properties of the products. It saves time as well as helps to design novel materials with desired properties. Polymers in solution systems are generally modeled with bead spring model and Monte Carlo or importance sampling Monte Carlo simulations is used to find the optimal configuration where the energy of the system is minimized. Often in these simulations, random numbers are used in the Monte Carlo steps. Normally random numbers try to form clusters and do not cover the entire dimension of the system. Thus the minimum energy structures obtained from simulations with random numbers are not optimal configuration of the system. In the present work a lattice-based model is used for polymer solution system and importance sampling Monte Carlo is used for simulation. Quasi-random numbers generated from Hammersley sequence sampling (HSS) are used in the simulation steps for stochastic selection polymers and its movements. Quasi-random numbers obtained from HSS are random in nature and they have n-dimensional uniformity. They do not form clusters and the structural configuration obtained using quasi-random numbers are optimal in nature. The optimal configurations of the polymers as obtained from random number and quasi-random number are compared. The result shows that simulation with HSS attains a lower energy state after initial quench. At the late stage of spinodal decomposition, the structure factor decrease-showing Ostwald ripening which is not observed from simulation with random numbers.  相似文献   

20.
Jia-Lin Li  Xu-Ming Xie 《Polymer》2009,50(9):2172-1262
Focusing on the binary polymer mixture films under the off-critical condition, the phase dynamics and wetting layer formation mechanisms of pattern-directed phase separation are numerically investigated. The simulated results demonstrate that, for different compositions, the polymer mixtures on the strip patterned surface can exhibit various phase morphologies in the strips of the bulk, which can be used to tailor the microscopic structures of films. The evolutions of these phase structures in the strips of the bulk obey almost the same power law with an exponent of 1/3, i.e., the Lifshitz-Slyozov growth law for the films with various off-critical degrees. It is found that the wetting layer thickness near the patterned surface grows logarithmically at the initial stages, just like the wetting layer formation mechanism of the polymer mixture near the surface with an isotropic potential. This revels that only patterning the surface potential may not change the growth law of the wetting layer. The simulated results also indicate that the diffusion of the component in the direction parallel to the surface originates from the edge of the strips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号