首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmented block copolymers with poly(propylene oxide) and crystallisable segments were synthesized and their structure-property relations studied. As crystallisable segments, amide units based on poly(p-xylylene terephthalamide), were used. The length of the amide segment was varied and these segments either had a monodisperse or random length distribution (polydisperse). The poly(propylene oxide) used was end capped with 20 wt% ethylene oxide (EO-tipped) and had a molecular weight of 2300 g/mol (Mn, incl. EO-tips). These segmented block copolymers are model block copolymers to gain insight in the structure-properties behaviour of related semi-crystalline segmented block copolymers, like polyether(urethane-urea)s. The morphology of the polyether(ester-amide)s (PEEA) was studied with TEM, the thermal properties with DSC and DMTA and the crystalline structures with WAXD. The elastic behaviour of the block copolymers was investigated in tensile and compression.Phase separation in PEEA's with crystallisable, short and monodisperse amide segments occurred by crystallisation, while with crystallisable random amide segments phase separation occurred through liquid-liquid demixing in combination with crystallisation. With short monodisperse amide segments, morphology of dispersed ribbons with a high aspect ratio was observed. PEEA's containing these monodisperse amide segments had higher moduli and better elastic properties as compared to PEEA's with random length amide segments. Increasing the length of the monodisperse amide segment increased the modulus and decreased the compression set of the corresponding blockcopolymers.  相似文献   

2.
Chenguang Yao  Guisheng Yang 《Polymer》2010,51(6):1516-11075
A new type of poly(ether-ester) based on poly(trimethylene terephthalate) as rigid segments and poly(ethylene oxide terephthalate) as soft segments was synthesized and its crystallization behavior and morphology were investigated. Differential Scanning Calorimetry revealed that the copolymer containing 57 wt% soft segments presented a low glass transition temperature (−46.4 °C) and a high melting temperature (201.8 °C), suggesting that it had the typical characteristic of thermoplastic elastomer. With increasing soft segment content from 35 to 57 wt%, the crystallization morphology transformed from banded spherulites to compact seaweed morphology at a certain film thickness, which was due to the change of surface tension and diffusivity caused by increasing the soft segment content. Moreover, with the decrease of film thickness from 15 to 2 μm, the crystallization morphology of the copolymer (57 wt% soft segment) changed from wheatear-like, compact seaweed to dendritic. Scanning Electron Microscopy revealed that some flower-like crystals presenting in the bulk, which had been surprisingly found in the poly(ether-ester) segmented block copolymers for the first time. Possible mechanism was discussed in the text.  相似文献   

3.
Poly(propylene oxide) based polyether(ester-amide)s (PEEA) with non-crystallisable amide segments were synthesized and their structure-property relations studied. These model segmented block copolymers were used to gain insight in the structure-property relations of block copolymers with liquid-liquid demixed morphologies, also present in segmented polyurethanes. The poly(propylene oxide) used had a molecular weight of 2300 g/mol and was end capped with 20 wt% ethylene oxide. The non-crystallisable amide segments are based on an amorphous polyamide: poly(m-xylylene isophthalamide) and the repetitive length (x) of the amide segment was varied from 1 to 10. Phase separation in these PEEA's occurred by liquid-liquid demixing when the length (x) of the non-crystallisable amide segment was higher than 2 (x>2). TEM experiments showed spherical structures at two size scales, 5-10 nm domains (nano-domains) and 30-500 nm domains (sub-micron domains), both dispersed in a polyether matrix. The size and volume fraction of these spherical domains were found to increase with increasing the amide segment length. The modulus of the materials increased moderately with increasing amide segment content (increasing amide segment length x). The compression and tensile sets values of these PEEA's were found to decrease with increasing amide segment length, thus these PEEA's behave also more elastic at longer amide contents (thus also at higher modulus). Giving time these liquid-liquid demixed segmented block copolymers recovered completely.  相似文献   

4.
Phase behavior of aqueous systems containing block copolymers of poly(ethylene oxide (PEO) and poly(propylene oxide) (PPO) was evaluated by building up temperature-concentration phase diagrams. We have studied bifunctional triblock copolymers (HO-PEO-PPO-PEO-OH) and monofunctional diblock copolymers (R-PEO-PPO-OH and R-PPO-PEO-OH, where R length is linear C4 and C12–14). The cloud points of the polymer solutions depended on EO/PO ratio, polarity, R length and position of the hydrophilic and hydrophobic segments along the molecule. Such factors influence on the solutions behavior was also analyzed in terms of critical micelle concentration (CMC), which was obtained from surface tension vs. concentration plots. Salts (NaCl and KCl) added into the polymer solutions change the solvent polarity decreasing the cloud points. On the other hand, the cloud points of the polymer solutions increased as a hydrotrope (sodium p-toluenesulfonate) was added. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1767–1772, 1997  相似文献   

5.
Reactive blending at 290 °C of a series of mixtures of poly(ethylene terephthalate) (PET) and poly(1,4-butylene succinate) (PBS) led to the formation of block PET/PBS copolyesters. The block lengths of the resulting copolymers decreased with the severity of the treatment. Copolyesters with PET/PBS molar compositions of 90/10, 80/20, 70/30, and 50/50 were prepared by this method and their composition and microstructure were characterized by 1H and 13C NMR, respectively. The Tg, Tm, and crystallinity of the copolymers decreased as the content in PBS and the degree of randomness increased. The elastic modulus and tensile strength of the copolymers decreased with the content of PBS, whereas, on the contrary, the elongation at break increased. The PET/PBS copolymers exhibited a pronounced hydrolytic degradability, which increased with the content in 1,4-butylene succinic units. Hydrolysis mainly occurred on the aliphatic ester groups.  相似文献   

6.
Tomonobu Mizumo 《Polymer》2004,45(3):861-864
Poly(propylene oxide) (PPO) tailed lithium(trifluoromethyl sulfonylimide)s (TFSI-PPO) were prepared as non-onium type ionic liquid polymers. Introduction of PPO chain to the TFSI salt group resulted in lower the glass transition temperature (Tg) and induce the salt dissociation. The TFSI-PPO showed relatively high ionic conductivity owing to the high dissociation degree of the TFSI salt group. The maximum ionic conductivity of 3.3×10−6 S cm−1 was observed at 30 °C for TFSI salt having PPO tail with number average molecular weight of 850. On the other hand, PPOs having the same salt moiety on both chain ends ((TFSI)2-PPO) showed higher Tg than that of TFSI-PPOs. The lithium transference number of the (TFSI)2-PPO with PPO chain length of Mn=2000 was 0.74 in spite of slightly lower ionic conductivity.  相似文献   

7.
Poly(propylene oxide) (PPO) was incorporated in a controlled manner between poly(dimethylsiloxane) (PDMS) and urea segments in segmented polyurea copolymers and their solid state structure-property behavior was investigated. The copolymers contained PDMS segments of MW 3200 or 7000 g/mol and an overall hard segment content of 10-35 wt%. PPO segments of MW 450 or 2000 g/mol were utilized. Equivalent polyurea copolymers based on only PDMS as the soft segment (SS) component were used as controls. The materials (with or without PPO) utilized in this study were able to develop microphase morphology as determined from dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS). DMA and SAXS results suggested that the ability of the PPO segments to hydrogen bond with the urea segments results in a limited inter-segmental mixing which leads to the formation of a gradient interphase, especially in the PPO-2000 co-SS containing copolymers. DMA also demonstrated that the polyureas based on only PDMS as the SS possessed remarkably broad and nearly temperature insensitive rubbery plateaus that extended up to ca. 175 °C, the upper temperature limit depending upon the PDMS MW. However, the incorporation of PPO resulted in more temperature sensitive rubbery plateaus. A distinct improvement in the Young's modulus, tensile strength, and elongation at break in the PPO-2000 and PDMS-7000 containing copolymers was observed due to inter-segmental hydrogen bonding and the formation of a gradient interphase. However, when PPO was incorporated as the co-SS, the extent of stress relaxation and mechanical hysteresis of the copolymers increased relative to the segmented polyureas based on the utilization of only PDMS as the soft segment component.  相似文献   

8.
J. Krijgsman 《Polymer》2005,46(16):6122-6127
Copolymers of telechelic poly(2,6-dimethyl-1,4-phenylene ether) (PPE) segments with terephthalic methyl ester end groups (PPE-2T, 3500 g/mol) and poly(dodecane terephthalate) (PDDT) were made via a polycondensation reaction in the melt. The inherent viscosities of the segmented copolymers were high. The thermal properties of the copolymers were studied by DMA. The segmented block copolymers had a transparent melt at low (12 wt%) PDDT contents. The segmented block copolymers had at higher PDDT contents a non-transparent melt and two glass transition temperatures. The glass transition temperature of the PPE phase decreased strongly with PDDT content in the copolymer. The glass transition temperature of the PDDT phase increased moderately with PPE content. At low PPE contents the modulus of the PDDT increased strongly with increasing PPE content.  相似文献   

9.
The morphology and crystallization behaviour of random block copolymers of poly(butylene terephthalate) and poly(tetramethylene ether glycol) have been investigated. Single crystals have been grown in thin films crystallized from the melt. Well defined lamellae, exhibiting (hkO) single crystal electron diffraction patterns have been observed in copolymers containing down to 49 wt% (0.83 mole fraction) poly(butylene terephthalate). WAXS and electron diffraction support a model of a relatively pure poly(butylene terephthalate) crystal core with the poly(tetramethylene ether glycol) (soft segment) sequences and short hard segments being rejected to the lamellar surface and the soft segment rich matrix. The lateral dimensions of the lamellae are determined by the number of hard segment sequences long enough to traverse the stable crystal size at the crystallization temperature. This leads to an initial population of crystals formed at Tc and a second set of smaller crystals that grow from the short hard segment sequences upon cooling to room temperature. The result is fractionation by sequence length due to a coupling of the sequence distribution with the stable crystal size at the crystallization temperature.  相似文献   

10.
Yumiko Otomo  Nobukatsu Nemoto 《Polymer》2005,46(23):9714-9724
Novel poly(tetramethylsilnaphthylenesiloxane) derivatives were synthesized and characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), and X-ray diffraction analyses. Poly(tetramethylsilnaphthylenesiloxane) derivatives were obtained by condensation polymerization of the corresponding disilanol derivatives, i.e. 1,4-, 1,5-, 2,6-, and 2,7-bis(dimethylhydroxysilyl)naphthalenes, which were prepared by the Grignard reaction using chlorodimethylsilane and the corresponding dibromonaphthalene derivatives followed by the hydrolyses, catalyzed by palladium on charcoal. The obtained poly(tetramethyl-1,5-silnaphthylenesiloxane) was insoluble in common organic solvents; however, the other polymers exhibited the good solubility in common organic solvents, such as tetrahydrofuran (THF), chloroform, dichloromethane, and toluene. The introduction of tetramethyl-1,5-silnaphthylenesiloxane units into the resulting polymer was confirmed by 1H NMR spectrum of the copolymer obtained by condensation copolymerization of 1,5-bis(dimethylhydroxysilyl)naphthalene with 1,4-bis(dimethylhydroxysilyl)naphthalene. It was revealed from the DSC and X-ray diffraction measurements that poly(tetramethyl-1,5-silnaphthylenesiloxane) and poly(tetramethyl-2,6-silnaphthylenesiloxane) exhibited the crystallinity; however, poly(tetramethyl-1,4-silnaphthylenesiloxane) and poly(tetramethyl-2,7-silnaphthylenesiloxane) were amorphous. The glass transition temperature (Tg) and the temperature at 5% weight loss (Td5) of poly(tetramethylsilnaphthylenesiloxane) derivatives with dimethylsilyl group at 1-position of the naphthylene moiety were higher than those at 2-position of the naphthylene moiety. The Tg and melting point (Tm) of the present polymers were higher than those of poly(tetramethyl-1,4-silphenylenesiloxane).  相似文献   

11.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   

12.
New super-tough poly(butylene terephthalate) (PBT) materials were obtained by melt blending PBT with both 20 wt% phenoxy (Ph) and 0-30 wt% maleic anhydride grafted poly(ethylene-octene) (mPEO) copolymers with different grafting levels. Ph was completely miscible in the PBT matrix. The presence of mPEO did not influence either the nature of the PBT-Ph matrix or the crystallization of PBT. The overall decrease in particle size and in interfacial tension upon grafting indicated that compatibilization had taken place. Super-tough (impact strength 23-fold that of the PBT) and stiffer PBT based blends were obtained at mPEO contents equal to or higher than 15%. The dependence of the critical inter-particle distance (τc), on both adhesion measured by means of the interfacial tension, and on the relation between the modulus of the matrix and that of the rubbery dispersed phase (Em/Ed), is proposed.  相似文献   

13.
ABA‐type block copolymers containing segments of poly(dimethyl siloxane) and poly(vinyl pyrrolidinone) were synthesized. Dihydroxyl‐terminated poly(dimethyl siloxane) was reacted with isophorone diisocyanate and then with t‐butyl hydroperoxide to obtain macroinitiators having siloxane units. The peroxidic diradical macroinitiators were used to polymerize vinyl pyrrolidinone monomer to synthesize ABA‐type block copolymers. By use of physicochemical methods, the structure was confirmed, and its characterization was accomplished. Mechanical and thermal characterizations of copolymers were made by stress–strain tests and differential scanning calorimetric measurements. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1915–1922, 1999  相似文献   

14.
张学骜  陈柯  龙永福  谢凯 《现代化工》2004,24(10):39-42
利用原子转移自由基聚合合成了端羧基聚苯乙烯,然后与4-氨基苯乙酮反应,生成末端为乙酰基的聚合物,以P2O5为催化剂,将功能化的聚合物与5-乙酰基-2-氨基二苯甲酮共聚,合成出刚柔嵌段共聚物聚苯基喹啉-b-聚苯乙烯(PPO-b-PS),用红外光谱(IR)、氢核磁共振(1HNMR)和热重分析(TGA)对其结构和性能进行了表征,并在三氟乙酸/二氯甲烷混合溶剂中进行了初步的自组装研究。  相似文献   

15.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

16.
Poly(ethylene oxide) (PEO) oligomers are employed extensively in pharmaceutical and biomedical arenas mainly due to their excellent physical and biological properties, including solubility in water and organic solvents, lack of toxicity, and absence of immunogenicity. PEO can be chemically modified and reacted with, or adsorbed onto, other molecules and surfaces. Sophisticated applications for PEO have increased the demand for PEO oligomers with tailored functionalities, and heterobifunctional PEOs are often needed. This review discusses the synthesis and applications of heterobifunctional PEO oligomers possessing amine, carboxylate, thiol, and maleimide functional groups.  相似文献   

17.
Pure terephthalic acid (TPA) was esterified with 1,3-propanediol (1,3-PDO) in the presence of various catalysts, in order to find the most effective one for this esterification reaction. The prepared oligomers were polycondensated in a second step under high vacuum and using the same catalyst (Sb(OCOCH3)3, Ti(OC4H9)4, GeO2) as before, or the well known catalyst for poly(ethylene terephthalate) (PET) production technology Sb2O3. The esterification reaction was monitored by measuring the distilled water as a function of time and from these data the modeling of this process was carried out. The received poly(propylene terephthalate) (PPT) samples were characterized by viscometry, carboxyl end-group content and color measurement. From this study, tetrabutoxytitanium was proved to be the most effective catalyst for the esterification reaction. When this catalyst was used in the second step a PPT polymer with the highest molecular weight was received.  相似文献   

18.
《Polymer》2003,44(24):7281-7289
A series of poly(ethylene terephthalate-co-ethylene 5-sodiosulfoisophthalate) copolyesters containing from 1 up to 50 mol% of sulfonated units was prepared by melt polycondensation from ethylene glycol and mixtures of dimethyl terephthalate and dimethyl 5-sodiosulfoisophthalate. The resulting copolymers had a random microstructure and contained oligo(ethylene glycol) units in amounts increasing with the content in sulfonated isophthalate units. Copolyesters with more than 20 mol% of 5-sodiosulfoisophthalic units were amorphous and easily soluble in water. The hydrodegradability of the copolyesters was very high as compared to poly(ethylene terephthalate), and increased with the content in sulfonated units. It was demonstrated that the susceptibility to acidic hydrolysis of these copolymers is mainly due to the presence of the sodium sulfonate groups, the influence of the oligo(ethylene glycol) units in this regard being noticeable but limited.  相似文献   

19.
Poly(butylene terephthalate-co-thiodiethylene terephthalate) copolymers of various compositions were synthesized and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers under investigation show a good thermal stability. At room temperature they appear as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of melting temperature with respect to homopolymers. A pure crystalline phase has been evidenced at high content of butylene terephthalate or thiodiethylene terephthalate units and Baur's equation was found to describe well the Tm-composition data. Amorphous samples (containing 50-100 mol% of thiodiethylene terephthalate units) showed a monotonic decrease of Tg as the content of sulfur-containing units is increased, due to the presence of flexible C-S-C bonds in the polymeric chain. Finally, the Fox equation described well the Tg-composition data.  相似文献   

20.
Bicomponent melt blown (MB) microfiber nonwovens of poly(propylene) (PP) and poly(ethylene terephthalate) (PET) were produced in this study. It is interesting to analyze the polymer distribution uniformity across the web because it affects many end‐use properties. By utilizing the technique of differential scanning calorimetry (DSC), a standard working line between heat of fusion and weight percentage was constructed for mixtures of PP and PET components. The fitted equations were used for determination of a component percentage in a certain position across the MB web. Measurements were conducted from DSC re‐heating curves to achieve accurate results. The distribution of polymer varies with polymer mass ratio and processing conditions. The overall uniformity increased with the percentage of PP. When PP is the minor component in the polymer pair, it exhibits notably higher percentage in edge areas across the MB web. These results suggest the phase interface distortion of the polymer melt occurred at the entrance of the MB coat‐hanger die tip. The polymer distribution uniformity is improved by adjusting temperature profile of the MB die. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2885–2889, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号