首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The symptomatic cure observed in the treatment of Alzheimer's disease (AD) by FDA approved drugs could possibly be due to their specificity against the active site of acetylcholinesterase (AChE) and not by targeting its pathogenicity. The AD pathogenicity involved in AChE protein is mainly due to amyloid beta peptide aggregation, which is triggered specifically by peripheral anionic site (PAS) of AChE. In the present study, a workflow has been developed for the identification and prioritization of potential compounds that could interact not only with the catalytic site but also with the PAS of AChE. To elucidate the essential structural elements of such inhibitors, pharmacophore models were constructed using PHASE, based on a set of fifteen best known AChE inhibitors. All these models on validation were further restricted to the best seven. These were transferred to PHASE database screening platform for screening 89,425 molecules deposited at the “ZINC natural product database”. Novel lead molecules retrieved were subsequently subjected to molecular docking and ADME profiling. A set of 12 compounds were identified with high pharmacophore fit values and good predicted biological activity scores. These compounds not only showed higher affinity for catalytic residues, but also for Trp86 and Trp286, which are important, at PAS of AChE. The knowledge gained from this study, could lead to the discovery of potential AChE inhibitors that are highly specific for AD treatment as they are bivalent lead molecules endowed with dual binding ability for both catalytic site and PAS of AChE.  相似文献   

2.
β-secretase (BACE1) is an aspartyl protease that processes the β-amyloid peptide in the human brain in patients with Alzheimer’s disease. There are two catalytic aspartates (ASP32 and ASP228) in the active domain of BACE1. Although it is believed that the net charge of the Asp dyad is −1, the exact protonation state still remains a matter of debate. We carried out molecular dynamic (MD) simulations for the four protonation states of BACE1 proteins. We applied Glide docking studies to 21 BACE1 inhibitors against the MD extracted conformations. The dynamic results infer that the protein/ligand complex remains stable during the entire simulation course for HD32D228 model. The results show that the hydrogen bonds between the inhibitor and the Asp dyad are maintained in the 10,000th ps snapshot of HD32D228 model. Our results also reveal the significant loop residues in maintaining the active binding conformation in the HD32D228 model. Molecular docking results show that the HD32D228 model provided the best enrichment factor score, suggesting that this model was able to recognize the most active compounds. Our observations provide an evidence for the preference of the anionic state (HD32D228) in BACE1 binding site and are in accord with reported computational data. The protonation state study would provide significant information to assign the correct protonation state for structure-based drug design and docking studies targeting the BACE1 proteins as a tactic to develop potential AD inhibitors.  相似文献   

3.
The acetylcholinesterase (AChE) is important to terminate acetylcholine-mediated neurotransmission at cholinergic synapses. The pivotal role of AChE in apoptosome formation through the interactions with cytochrome c (Cyt c) was demonstrated in recent study. In order to investigate the proper binding conformation between the human AChE (hAChE) and human Cyt c (hCyt c), macro-molecular docking simulation was performed using DOT 2.0 program. The hCyt c was bound to peripheral anionic site (PAS) on hAChE and binding mode of the docked conformation was very similar to the reported crystal structure of the AChE and fasciculin-II (Fas-II) complex. Two 10ns molecular dynamics (MD) simulations were carried out to refine the binding mode of docked structure and to observe the differences of the binding conformations between the absent (Apo) and presence (Holo) of heme group. The key hydrogen bonding residues between hAChE and hCyt c proteins were found in Apo and Holo systems, as well as each Tyr341 and Trp286 residue of hAChE was participated in cation-pi (π) interactions with Lys79 of hCyt c in Apo and Holo systems, respectively. From the present study, although the final structures of the Apo and Holo systems have similar binding pattern, several differences were investigated in flexibilities, interface interactions, and interface accessible surface areas. Based on these results, we were able to predict the reasonable binding conformation which is indispensable for apoptosome formation.  相似文献   

4.
The extracellular module of SPARC/osteonectin binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-stimulated proliferation of endothelial cells. In an attempt to identify the binding site for SPARC on VEGF, we hypothesized that this binding site could overlap at least partially the binding site of VEGF receptor 1 (VEGFR-1), as SPARC acts by preventing VEGF-induced phosphorylation of VEGFR-1. To this end, a docking simulation was carried out using a predictive docking tool to obtain modeled structures of the VEGF-SPARC complex. The predicted structure of VEGF-SPARC complex indicates that the extracellular domain of SPARC interacts with the VEGFR-1 binding site of VEGF, and is consistent with known biochemical data. Following molecular dynamics refinement, side-chain interactions at the protein interface were identified that were predicted to contribute substantially to the free energy of binding. These provide a detailed prediction of key amino acid side-chain interactions at the protein-protein interface. To validate the model further, the identified interactions will be used for designing mutagenesis studies to investigate their effect on binding activity. This model of the VEGF-SPARC complex should provide a basis for future studies aimed at identifying inhibitors of VEGF-induced angiogenesis.  相似文献   

5.
6.
MurF ligase catalyzes the final cytoplasmic step of bacterial peptidoglycan biosynthesis and, as such, is a validated target for therapeutic intervention. Herein, we performed molecular docking to identify putative inhibitors of Acinetobacter baumannii MurF (AbMurF). Based on comparative docking analysis, compound 114 (ethyl pyridine substituted 3-cyanothiophene) was predicted to potentially be the most active ligand. Computational pharmacokinetic characterization of drug-likeness of the compound showed it to fulfil all the parameters of Muegge and the MDDR rule. A molecular dynamic simulation of 114 indicated the complex to be stable on the basis of an average root mean square deviation (RMSD) value of 2.09 Å for the ligand. The stability of the complex was further supported by root mean square fluctuation (RMSF), beta factor and radius of gyration values. Analyzing the complex using radial distribution function (RDF) and a novel analytical tool termed the axial frequency distribution (AFD) illustrated that after simulation the ligand is positioned in close vicinity of the protein active site where Thr42 and Asp43 participate in hydrogen bonding and stabilization of the complex. Binding free energy calculations based on the Poisson-Boltzmann or Generalized–Born Surface Area Continuum Solvation (MM(PB/GB)SA) method indicated the van der Waals contribution to the overall binding energy of the complex to be dominant along with electrostatic contributions involving the hot spot amino acids from the protein active site. The present results indicate that the screened compound 114 may act as a parent structure for designing potent derivatives against AbMurF in specific and MurF of other bacterial pathogens in general.  相似文献   

7.
Five sets of ρ1 GABAC homology models were generated based on X-ray crystal structures of the acetylcholine binding protein (AChBP), the ion channel from Caenorhabditis elegans (GLIC), the ion channel from Erwinia chrysanthemi (ELIC), the homomeric GABAA β3 ion channel, and the homomeric α-subunit of glutamate-gated homopentameric chloride channel (GluCl). The GluCl based model was found to the represent the structure of ρ1 GABAC receptors. The GABA pose docked in the selected best model was confirmed by QM-polarized ligand docking and induced fit docking protocol, and used to study molecular interactions in the ρ1 GABA binding site. The potential interactions of identified residues are discussed. This study identified several residues with potential ligand interactions located on loops F and G with their side chain oriented toward the binding site such as Ser215 and Gln83. The partial agonists muscimol and imidazole-4-acetic acid (I4AA) were docked into the binding site of the most reliable ‘GABA bound’ homology model. The potency and efficacy of these partial agonists in activating recombinant ρ1 receptors were correlated with their docking results. The model predicts that muscimol resembles GABA in the docking pose with similar interactions. However, I4AA has a very different docking pose to GABA and was predicted by the model to form ππ stacking with aromatic residues in the orthosteric binding site. A set of TPMPA bound ρ1 homology models based on the GluClα ‘apo state’ template was built in order to study a competitive antagonist in the ρ1 orthosteric binding site. The results demonstrated the ability of our model to explain most experimental findings and predict potential roles of residues within the orthosteric binding site.  相似文献   

8.
The present work combines molecular docking calculations, 3D-QSAR, molecular dynamics simulations and free binding energy calculations (MM/PBSA and MM/GBSA) in a set of 28 structural analogues of acyl homoserine lactones with Quorum Sensing antagonist activity. The aim of this work is to understand how ligand binds and is affected by the molecular microenvironment in the active site of the LasR receptor for pseudomonas aeruginosa. We also study the stability of the interaction to find key structural characteristics that explain the antagonist activities of this set of ligands. This information is relevant for the rational modification or design of molecules and their identification as powerful LasR modulators.The analysis of molecular docking simulations shows that the 28 analogues have a similar binding mode compared to the native ligand. The carbonyl groups belonging to the lactone ring and the amide group of the acyl chain are oriented towards the amino acids forming hydrogen bond like interactions. The difference in antagonist activity is due to location and orientation of the LasR side chains within the hydrophobic pocket in its binding site. Additionally, we carried out molecular dynamics simulations to understand the conformational changes in the ligand-receptor interaction and the stability of each complex. Results show a direct relationship among the interaction energies of the ligands and the activities as an antagonist of the LasR receptor.  相似文献   

9.
A conformational analysis and docking study of potent factor XIIIa inhibitors having a cyclopropenone ring were carried out in an attempt to obtain structural insight into the inhibition mechanism. First, stable conformers of the inhibitors alone were obtained from the conformational analysis by systematic search and molecular dynamics. Next, a binding form model of factor XIIIa was built based on an X-ray crystal structure of the enzyme. Finally, the docking study of the inhibitors into the model’s binding site was performed. From the resulting stable complex structures, it was found that the cyclopropenone ring fits the active site located at the base of the binding cavity with high complementarity. The carbonyl oxygen of the cyclopropenone ring formed a hydrogen bond to the indole NH group of Trp279 and the terminal carbon atom of the reactive C=C double bond was in close proximity to the sulfur atom of the catalytic residue, Cys314. This binding mode suggests a possible inhibition mechanism, whereby the cysteine residue reacts with the cyclopropenone ring of the inhibitor, forming an enzyme-ligand adduct. In addition, the higher interaction energies between factor XIIIa and the inhibitors alluded to the probable binding sites of the ligand side chain.  相似文献   

10.
We have designed small focused combinatorial library of hexapeptide inhibitors of NS3 serine protease of the hepatitis C virus (HCV) by structure-based molecular design complemented by combinatorial optimisation of the individual residues. Rational residue substitutions were guided by the structure and properties of the binding pockets of the enzyme's active site. The inhibitors were derived from peptides known to inhibit the NS3 serine protease by using unusual amino acids and alpha-ketocysteine or difluoroaminobutyric acid, which are known to bind to the S1 pocket of the catalytic site. Inhibition constants (Ki) of the designed library of inhibitors were predicted from a QSAR model that correlated experimental Ki of known peptidic inhibitors of NS3 with the enthalpies of enzyme-inhibitor interaction computed via molecular mechanics and the solvent effect contribution to the binding affinity derived from the continuum model of solvation. The library of the optimised inhibitors contains promising drug candidates-water-soluble anionic hexapeptides with predicted Ki* in the picomolar range.  相似文献   

11.
The binding modes of a known 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole, quinazoline, pyrimidine and indolinone series of Aurora A kinase inhibitors have been studied using molecular docking and molecular dynamics (MD) simulations. Crystallographic bound compound 8 was precisely predicted by our docking procedure as evident from 0.43 Å root mean square (rms) deviations. In addition compound 25 (AZ_68) has been successfully cross-docked within the Aurora A kinase active site, which was pre-organized for inhibitor 8. We found four key sites (A: solvent-exposed front pocket, B: hinge region, C: selectivity pocket and D: solvent-exposed phosphate binding region) of the Aurora A kinase contributing towards the binding of these compounds. We suggest that the small hydrophobic substituents at C-6 position of pyrrolopyrazole nucleus (in compounds 1–8); C-6 and C-7 positions of the quinazoline moiety (in compounds 9–23); C-2 position of the quinazoline and C-4 position of the pyrimidine (in compound 25) could be more effective and selective through increased hydrophobic contacts and selectivity pocket interactions with these modifications of Aurora A kinase inhibitors. Five representative complexes were subjected to 1000 ps of MD simulation to determine the stability of the predicted binding conformations. The low value of the root mean square deviations (ranging from 0.725 to 1.820 Å) between the starting complex structure and the energy minimized final average complex structure suggests that the Glide Extra Precision (XP) derived docked complexes are in a state of near equilibrium. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity.  相似文献   

12.
The front-line antituberculosis drug isoniazid (INH) inhibits InhA, the NADH-dependent fatty acid biosynthesis enoyl ACP-reductase from Mycobacterium tuberculosis, via formation of covalent adducts with NAD (INH-NAD adducts). While ring tautomers were found the main species formed in solution, only the 4S chain INH-NAD tautomer was evidenced in the crystallized InhA:INH-NAD complex. In this study we attempted to explore the modes of interaction and energy binding of the different isomers placed in the active site of InhA with the help of various molecular modelling techniques. Ligand and enzyme models were generated with the help of the Vega ZZ program package. Resulting ligands were then docked into the InhA active site individually using computational automated docking package AUTODOCK 3.0.5. The more relevant docked conformations were then used to compute the interaction energy between the ligands and the InhA cavity. The AM1 Hamiltonian and the QM/MM ONIOM methodologies were used and the results compared. The various tautomers were found docked in almost the same place where INH-NAD was present as predicted by earlier X-ray crystallographic studies. However, some changes of ligand conformation and of the interactions ligand-protein were evidenced. The lower binding energy was observed for the 4S chain adduct that probably represents the effective active form of the INH-NAD adducts, as compared to the 4R epimer. The two 4S,7R and 4R,7S ring tautomers show intermediate and similar binding energies contrasting with their different experimental inhibitory potency on InhA. As a possible explanation based on calculated conformations, we formulated the hypothesis of an initial binding of the two ring tautomers to InhA followed by opening of only the ring hemiamidal 4S,7R tautomer (possibly catalyzed by Tyr158 phenolate basic group) to give the 4S chain INH-NAD tight-binding inhibitor. The predictions of ligand-protein interactions at the molecular level can be of primary importance in elucidating the mechanisms of action of isoniazid and InhA-related resistances, in identifying the effective mycobactericidal entities and, in further step, in the design of a new generation of antitubercular drugs.  相似文献   

13.
O-methylation of flavonoid compounds is an important enzymatic reaction since it not only reduces the chemical reactivity of their phenolic hydroxyl groups but also increases their lipophilicity and, hence, their intracellular compartmentation. Several genes encoding flavonoid O-methyltransferases (OMTs) have been isolated and characterized both at the molecular and biochemical levels. In contrast with mammalian enzymes, plant OMTs exhibit narrow substrate specificities as well as position-specific activities, so that the homology comparison, derived using programs such as BLAST can not provide sufficient information on the enzyme function or its substrate preference. In order to study these characteristics, therefore, another approach, homology-based modelling is being carried out. We report here the determination of the 3-D structure of Arabidopsis thaliana O-methyltransferase, AtOMT1 as well as its dynamics when complexed with its substrate. The predicted structure obtained by homology-based modelling is conserved during molecular dynamics simulations. AtOMT1 exhibits a structure similar to that of caffeic acid O-methyltransferase, COMT when the latter was used as a template. Whereas COMT includes 20 alpha-helices and nine beta-sheets, AtOMT1 has 16 and 9, respectively. Although the homology between both proteins is higher than 77% and all amino acids surrounding the active sites, except one residue, are similar in their primary sequences, the two proteins exhibit different substrate preferences. The differences in substrate specificity may be explained on the basis of the predicted structures of the protein and its complex with the substrate. In addition, docking the substrate into the active site of the protein allowed the study of the structural change of the active site on the dihedral angle distribution of the residues surrounding the active site.  相似文献   

14.
A piezoelectric biosensor has been developed on the basis of the reversible acetylcholinesterase (AChE) inhibitor propidium. The propidium cation was bound to a 11-mercaptoundecanoic acid monolayer on gold-coated quartz crystals. The immobilization was done via activation of carboxyl groups by 1,3-dicyclohexylcarbodiimide (DCC). Different types of cholinesterases (acetyl- and butyryl-ChE) from different origins were tested for their binding ability towards the immobilized propidium. Binding studies were performed in a flow system. Furthermore, catalytically active and organophosphate-inhibited enzyme were compared regarding their binding capability. The binding constants were derived by using an one to one binding model and a refined model also including rebinding effects. It was shown that organophosphorylation of the active site hardly influences the affinity of AChE towards propidium. Furthermore the propidium-based biosensor provides equal sensitivity as compared with piezolelectric sensors with immobilized paraoxon—an active site ligands of AChE.  相似文献   

15.
Staphylococcal enterotoxin A (SEA) cross-links two class II major histocompatibility complex (MHC) molecules and forms a multimeric assembly with T-cell receptors (TcRs). The X-ray crystal structure of SEA has been solved, yet details describing molecular recognition and association remain unclear. We present a structural model for the interactions of SEA with cell-surface proteins. Molecular docking calculations predicting SEA association with the class II MHC molecule HLA-DR1 were performed by using a rigid-body docking method. Docked orientations were evaluated by a Poisson-Boltzmann model for the electrostatic free energy of binding and the hydrophobic effect calculated from molecular surface areas. We found that the best-scoring SEA conformers for the DR1alpha interface display a binding mode similar to that determined crystallographically for staphylococcal enterotoxin B bound to HLA-DR1. For the zinc-binding site of SEA, docking DR1beta yielded several orientations exhibiting tetrahedral-like coordination geometries. Combining the two interfaces, tetramers were modeled by docking an alphabeta TcR with trimolecular complexes DR1beta-SEA-DR1alpha and SEA-betaDR1alpha-SEA. Our results indicate that the complex DR1beta-SEA-DR1alpha provides a more favorable assembly for the engagement of TcRs, forming SEA molecular contacts that are in accord with reported mutagenesis studies. In contrast, the cooperative association of two SEA molecules on a single DR1 molecule sterically inhibits interactions with TcRs. We suggest that signal transduction stimulated by SEA through large-scale assembly is limited to four or five TcR-(DR1beta-SEA-DR1alpha) tetramers and requires the dimerization of class II MHC molecules, while TcR dimerization is unlikely.  相似文献   

16.
A novel approach of combining flexible molecular docking, GRID molecular interaction fields, analysis of ligand-protein hydrogen bond interactions, conformational energy penalties and 3D-QSAR analysis was used to propose a binding mode in the dimer interface of the iGluR2 receptor for the biarylpropylsulfonamide class of positive allosteric AMPA modulators. Possible binding poses were generated by flexible molecular docking. GRID molecular interaction fields of the binding site, ligand-protein hydrogen bonding interactions and conformational energy penalties were used to select the most likely binding mode. The selected binding poses were subjected to a 3D-QSAR analysis using previously published activity data. The resulting model (2 LVs, R2=0.89, q2=0.61) predicted the activities of the compounds in the test set with a standard deviation on error of prediction of 0.17. The proposed binding mode was validated by interpretation of the PLS-coefficient regions from the 3D-QSAR analysis in terms of interactions between the receptor and the modulators.  相似文献   

17.
Several three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and catalyst pharmacophore feature building programs for a series of 26 truncated ketoacid inhibitors designed particularly for exploring the P2 and P3 binding pockets of HCV NS3 protease. The structures of these inhibitors were built from a structure template extracted from the crystal structure of HCV NS3 protease. The structures were aligned through docking each inhibitor into the NS3 active site using program GOLD. The best CoMSIA model was identified from the stepwise analysis results and the corresponding pharmacophore features derived were used for constructing a pharmacophore hypothesis by the catalyst program. Pharmacophore features obtained by CoMFA and CoMSIA are found to be in accord with each other and are both mapped onto the molecular 5K surface of NS3 active site. These pharmacophore features were also compared with those obtained by the catalyst program and mapped onto the same NS3 molecular surface. The pharmacophore building process was also performed for 20 boronic acid based NS3 inhibitors characterized by a long hydrophobic side chain attached at position P2. This latter pharmacophore hypothesis built by the catalyst program was also mapped onto the molecular surface of NS3 active site to define a second hydrophobic feature at position P2. The possibility of using the pharmacophore features mapped P2 and P3 binding pocket to design more potent depeptidized NS3 inhibitors was discussed.  相似文献   

18.
Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer’s disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å3, providing additional clues for drug design.  相似文献   

19.
To develop more potent JAK3 kinase inhibitors, a series of CP-690550 derivatives were investigated using combined molecular modeling techniques, such as 3D-QSAR, molecular docking and molecular dynamics (MD). The leave-one-out correlation (q2) and non-cross-validated correlation coefficient (r2) of the best CoMFA model are 0.715 and 0.992, respectively. The q2 and r2 values of the best CoMSIA model are 0.739 and 0.995, respectively. The steric, electrostatic, and hydrophobic fields played important roles in determining the inhibitory activity of CP-690550 derivatives. Some new JAK3 kinase inhibitors were designed. Some of them have better inhibitory activity than the most potent Tofacitinib (CP-690550). Molecular docking was used to identify some key amino acid residues at the active site of JAK3 protein. 10 ns MD simulations were successfully performed to confirm the detailed binding mode and validate the rationality of docking results. The calculation of the binding free energies by MMPBSA method gives a good correlation with the predicted biological activity. To our knowledge, this is the first report on MD simulations and free energy calculations for this series of compounds. The combination results of this study will be valuable for the development of potent and novel JAK3 kinase inhibitors.  相似文献   

20.
In this project, several docking conditions, scoring functions and corresponding protein-aligned molecular field analysis (CoMFA) models were evaluated for a diverse set of neuraminidase (NA) inhibitors. To this end, a group of inhibitors were docked into the active site of NA. The docked structures were utilized to construct a corresponding protein-aligned CoMFA models by employing probe-based (H+, OH, CH3) energy grids and genetic partial least squares (G/PLS) statistical analysis. A total of 16 different docking configurations were evaluated, of which some succeeded in producing self-consistent and predictive CoMFA models. However, the best model coincided with docking the ionized ligands into the hydrated form of the binding site via PLP1 scoring function (r2LOO=0.735, r2PRESS against 24 test compounds=0.828). The highest-ranking CoMFA models were employed to probe NA-ligand interactions. Further validation by comparison with a co-crystallized ligand-NA crystallographic structure was performed. This combination of docking/scoring/CoMFA modeling provided interesting insights into the binding of different NA inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号