首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Glycine is an important precursor of cyanogen chloride (CNCl)--a disinfection byproduct (DBP) found in chlorinated drinking water. To model CNCl formation from glycine during chlorination, the mechanism and kinetics of the reaction between glycine and free chlorine were investigated. Kinetic experiments indicated that CNCI formation was limited by either the decay rates of N,N-dichloroglycine or a proposed intermediate, N-chloroiminocarboxylate, CIN=CHCO2-. Only the anionic form of N,N-dichloroglycine, NCl2CH2CO2-, however, decays to form CNCl, while the protonated neutral species forms N-chloromethylimine. At pH > 6, glycine-nitrogen is stoichiometrically converted to CNCI, while conversion decreases at lower pH due to the formation of N-chloromethylimine. Under conditions relevant to drinking water treatment, i.e., at pH 6 to 8 and with free chlorine in excess, a simplified rate expression for the concentration of glycine-nitrogen converted to CNCl, [CNCl]f, applies: dt/d[CNCl]f = k2*[Cl2-Gly](T,o)exp(-k2*t) where [Cl2-Gly]T,o is the initial concentration of total N,N-dichloroglycine, k2* is the first-order decay constant for CIN=CHCO2-, k2*(s(-1)) = 10(12)(+/-4) exp(-1.0(+/-0.3) x 10(4)/T), and T is the absolute temperature in K. Kinetic expressions for d[CNCl]/dt when free chlorine is in excess, however, must also account for the significant decay of CNCl by hypochlorite-catalyzed hydrolysis, which has been characterized in previous studies. Although CNCl formation is independent of the free chlorine concentration, higher chlorine concentrations promote its hydrolysis.  相似文献   

2.
Amino acids have been cited as potential precursors of the disinfection byproduct cyanogen chloride in chlorinated drinking water. Screening experiments with 17 amino acids were performed in this study to comprehensively identify important CNCl precursors. Among this set, only glycine was found to yield detectable CNCl (i.e., > 0.6% yields). Additional experiments were conducted to estimate the relative significance of glycine as a CNCI precursor in water samples collected from the Huron River, Michigan, by concurrently characterizing the amino acid content and monitoring CNCI yields after chlorination. Chlorine was added at slightly less than the sample breakpoint dose to optimize CNCl formation and stability in the samples. On the basis of previous determinations that glycine-nitrogen is stoichiometrically converted to CNCI-N at pH > 6, it was estimated that glycine may account for 42-45% of the CNCI formed in the river water samples (pH 8.2). The kinetic profile of CNCl formation in the sample, with a half-life of about 20 min, indicated that both rapid and slower formation pathways were important. Glycine formation of CNCl, with a half-life of 4 min, is likely to contribute significantly to the rapidly formed CNCI, while unidentified precursors must accountfor the slower pathway. Non-glycine-derived CNCl precursors in this water source were further examined to determine if they were largely proteinaceous in character using a technique known as immobilized metal ion affinity chromatography (IMAC). These experiments demonstrated that copper-loaded IMAC resins were much more effective in removing glycine than other CNCI precursor compounds in the sample matrix. The unidentified CNCI precursor components, therefore, are not likely to be proteinaceous and are more likely to be associated with the fulvic/humic fraction of organic matter.  相似文献   

3.
This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.  相似文献   

4.
Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical centers to enable imaging of soft tissues (e.g., organs, veins, blood vessels) and are designed to be inert substances, with 95% eliminated in urine and feces unmetabolized within 24 h. ICM are not well removed in wastewater treatment plants, such that they have been found at elevated concentrations in rivers and streams (up to 100 μg/L). Naturally occurring iodide in source waters is believed to be a primary source of iodine in the formation of iodo-DBPs, but a previous 23-city iodo-DBP occurrence study also revealed appreciable levels of iodo-DBPs in some drinking waters that had very low or no detectable iodide in their source waters. When 10 of the original 23 cities' source waters were resampled, four ICM were found--iopamidol, iopromide, iohexol, and diatrizoate--with iopamidol most frequently detected, in 6 of the 10 plants sampled, with concentrations up to 2700 ng/L. Subsequent controlled laboratory reactions of iopamidol with aqueous chlorine and monochloramine in the absence of natural organic matter (NOM) produced only trace levels of iodo-DBPs; however, when reacted in real source waters (containing NOM), chlorine and monochloramine produced significant levels of iodo-THMs and iodo-acids, up to 212 nM for dichloroiodomethane and 3.0 nM for iodoacetic acid, respectively, for chlorination. The pH behavior was different for chlorine and monochloramine, such that iodo-DBP concentrations maximized at higher pH (8.5) for chlorine, but at lower pH (6.5) for monochloramine. Extracts from chloraminated source waters with and without iopamidol, as well as from chlorinated source waters with iopamidol, were the most cytotoxic samples in mammalian cells. Source waters with iopamidol but no disinfectant added were the least cytotoxic. While extracts from chlorinated and chloraminated source waters were genotoxic, the addition of iopamidol enhanced their genotoxicity. Therefore, while ICM are not toxic in themselves, their presence in source waters may be a source of concern because of the formation of highly toxic iodo-DBPs in chlorinated and chloraminated drinking water.  相似文献   

5.
A comprehensive reaction model was developed that incorporates the effect of bromide on monochloramine loss and formation of bromine and chlorine containing dihaloacetic acids (DHAAs) in the presence of natural organic matter (NOM). Reaction pathways accounted for the oxidation of bromide to active bromine (Br(l)) species, catalyzed monochloramine autodecomposition, NOM oxidation, and halogen incorporation into DHAAs. The reaction scheme incorporates a simplified reaction pathway describing the formation and termination of Br(l). In the absence of NOM, the model adequately predicted bromide catalyzed monochloramine autodecomposition. The Br(l) reaction rate coefficients are 4 orders of magnitude greater than HOCl for the same NOM sources under chloramination conditions. Surprisingly, the rate of NOM oxidation by Br(l) was faster than bromide catalyzed monochloramine autodecomposition by Br(l) so that the latter reactions could largely be ignored in the presence of NOM. Incorporation of bromine and chlorine into DHAAs was proportional to the amount of NOM oxidized by each halogen and modeled using simple bromine (alpha(Br)) and chlorine (alpha(Cl)) incorporation coefficients. Both coefficients were found to be independent of each other and alpha(Br) was one-half the value of alpha(Cl). This indicates that chlorine incorporates itself into DHAA precursors more effectivelythan bromine. Model predictions compared well with DHAA measurements in the presence of increasing bromide concentrations and is attributable to the increased rate of NOM oxidation, which is rate limited by the oxidation of bromide ion in chloraminated systems.  相似文献   

6.
Nitrogen-containing disinfection byproducts (N-DBPs) are potentially toxic. This study assessed the formation of three N-DBPs (dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and N-nitrosodimethylamine (NDMA)) and one regulated DBP (chloroform) upon adding free chlorine and monochloramine into solutions containing different fractions (hydrophobic, transphilic, hydrophilic, and colloidal) of dissolved organic matter (DOM) isolates (n=17). We hypothesized that N-DBP formation would increase for organic matter enriched in organic nitrogen. Formation potential tests were conducted with free chlorine or preformed monochloramine. Chloramination formed, on average, 10 times lower chloroform concentrations, but 5 times higher DCAN concentrations, as compared with free chlorine addition. The formation of the two halogenated N-DBPs (DCAN and TCNM) increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased upon adding free chlorine, but the N-DBP formation was relatively constant upon adding monochloramine. NDMA, a nonhalogenated N-DBP, formed on average 0.26 nmol per mg of DOC (4.5 nmol per mg of DON) upon adding monochloramine; no NDMA formation occurred upon adding free chlorine. NDMA formation increased as the DOC/DON ratio decreased (i.e., increasing nitrogen content of DOM). NDMA formation also increased as the amino sugar to aromatic ratio of DOM increased. The results support the hypothesis that DON promotes the formation of N-DBPs.  相似文献   

7.
NDMA is a recently recognized disinfection byproduct that can be formed by a reaction of monochloramine with natural organic matter (NOM). This study was undertaken to examine the influence of various preoxidation strategies (including prechlorination) on the subsequent formation of NDMA and to determine how this is correlated to the subsequent loss in specific UV absorbance (SUVA) that preoxidation causes. Batch experiments were conducted using surface-water-derived NOM exposed to various oxidants that included free chlorine, permanganate, hydrogen peroxide, and ozone. Photochemical oxidation was also studied by exposing the water to simulated sunlight The amount of NDMA formed after monochloramine was added or formed in situ, in the case when free chlorine was the preoxidant, was significantly reduced by these treatments. The reduction was proportional to the reduction in SUVA that also occurred as a consequence of these treatments indicating that SUVA may be a good surrogate for NDMA precursor content. Furthermore, the change in NDMA formation per unit change in SUVA was a constant that did not depend on the nature of the oxidant  相似文献   

8.
The production of monochloramine by the reaction of aqueous ammonia and free chlorine is important in both drinking water and wastewater treatment systems. Accurate prediction of the rate of monochloramine formation is a prerequisite for any modeling work related to this fundamental reaction. There are significant discrepancies between rate constants reported in the literature. Furthermore, little information is available on the temperature dependence of the reaction rate constant. The purposes of this study were to kinetically examine the potential reaction pathways, accurately determine the specific rate constants, and establish the Arrhenius equation for the reaction of monochloramine formation using the stopped-flow technique. Results indicate that the rate constants are highly pH dependent due to the speciation of both free chlorine and ammonia. From a strictly kinetic point of view, monochloramine formation could be explained by either the nonionic pathway between HOCl and NH3 or the ionic pathway between OCl- and NH4+. However, because the ionic pathway is mechanistically implausible the reaction is shown to be between the nonionic species (HOCl and NH3). The specific rate constant for the nonionic pathway at 25 degrees C was determined to be 3.07 x 10(6) (M(-1) x s(-1)). The Arrhenius equation was obtained as k(HOCl,NH3) = 5.40 x 10(9) exp(- 2237/T), which provided an activation energy of 18.6 kJ x mol(-1).  相似文献   

9.
Sulfamethoxazole (SMX)--a member of the sulfonamide antibacterial class--has been frequently detected in municipal wastewater and surface water bodies in recent years. Kinetics, mechanisms, and products of SMX in reactions with free chlorine (HOCl/OCl-) were studied in detail to evaluate the effect of chlorination processes on the fate of sulfonamides in municipal wastewaters and affected drinking waters. Direct reactions of free available chlorine (FAC) with SMX were quite rapid. A half-life of 23 s was measured under pseudo-first-order conditions ([FAC]0 = 20 microM (1.4 mg/L) and [SMX]0 = 2 microM) at pH 7 and 25 degrees C in buffered reagent water. In contrast, a half-life of 38 h was determined for reactions with combined chlorine (NH2Cl, NHCl2) under similar conditions. Free chlorine reaction rates were first-order in both substrate and oxidant, with specific second-order rate constants of 1.1 x 10(3) and 2.4 x 10(3) M(-1) s(-1) for SMX neutral and anionic species, respectively. Investigations with substructure model compounds and identification of reaction products verified that chlorine directly attacks the SMX aniline-nitrogen, resulting in (i) halogenation of the SMX aniline moiety to yield a ring-chlorinated product at sub-stoichiometric FAC concentrations (i.e., [FAC]0:[SMX]0 < or = 1) or (ii) rupture of the SMX sulfonamide moiety in the presence of stoichiometric excess of FAC to yield 3-amino-5-methylisoxazole, SO4(2-) (via SO2), and N-chloro-p-benzoquinoneimine. Reaction ii represents an unexpected aromatic amine chlorination mechanism that has not previously been evaluated in great detail. Experiments conducted in wastewater and drinking water matrixes appeared to validate measured reaction kinetics for SMX, indicating that SMX and likely other sulfonamide antibacterials should generally undergo substantial transformation during disinfection of such waters with free chlorine residuals.  相似文献   

10.
Chlorinated and brominated forms of MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) were detected in the disinfected waters of six pairs of U.S. drinking watertreatment plants, with MX as high as approximately 310 ng/L in finished water. The strength of this study is in its comparison between pairs of plants that drew water from the same or similar watersheds and treated the raw source water with two contrasting disinfection and/or treatment schemes. As expected, the brominated MX-analogues were produced in greater abundance than MX from raw source waters with high bromide concentrations. Disinfection of waters with free chlorine produced more MX-analogues than disinfection with monochloramine. Use of chloramines as the residual disinfectant appeared to stabilize MX-analogues once they were formed. Pretreatment with ozone and biologically active granular activated carbon minimized MX-analogue formation upon subsequent chlorination or chloramination, either because MX precursors were altered by ozone, removed by granular activated carbon, or degraded by biological filtration. Pretreatment with chlorine dioxide did not minimize MX-analogue formation. In plant effluent samples, MX and chloroform were positively correlated (molar R = 0.7, N = 6). Similar formation patterns of MX-analogues, trihalomethanes, and haloacetic acids in these water treatment plants suggest that the three classes of disinfection byproduct follow a common formation mechanism from natural organic matter and chlorine.  相似文献   

11.
The formation of the potent carcinogen, N-nitrosodimethylamine (NDMA), during chlorine disinfection has caused significant concern among drinking water and wastewater recycling utilities practicing intentional or unintentional chloramination. Previous research modeled NDMA formation as arising from a reaction between monochloramine and organic nitrogen precursors, such as dimethylamine, via an unsymmetrical dimethylhydrazine (UDMH) intermediate. Contrary to the importance of monochloramine indicated by previous studies, hypochlorite formed an order of magnitude more NDMA than monochloramine when applied to a secondary municipal wastewater effluent containing excess ammonia. Experiments involving variation of the order that each reagent (i.e., hypochlorite, ammonium chloride, and dimethylamine) was added to solution suggest two factors that may be more important for NDMA formation than the presence of monochloramine: (i) the chlorination state of organic nitrogen precursors and (ii) the partial formation of dichloramine. Although dichloramine formation was most influenced by the pH conditions under which inorganic chloramine formation was performed, mixing effects related to the order of reagent addition may be important at full-scale plants. Chloramination strategies are suggested that may reduce NDMA formation by nearly an order of magnitude.  相似文献   

12.
This investigation of sequential disinfection, with ozone followed by free chlorine, was carried out using Bacillus subtilis spores, to make a quantitative evaluation and to improve the mechanistic understanding of their synergistic effect. This study shows that the extent of the synergistic effect in the inactivation of Bacillus subtilis spores appears to be dependent upon the level of preozonation. However, when the ozone pretreatment level exceeded the lag phase of the ozone inactivation curve, the chlorine inactivation curves were almost identical regardless of the level of preozonation. When this sequential disinfection was performed in the reverse order, no enhanced disinfection was observed. This difference, depending on the order of disinfectant application in sequential disinfection, was explained in terms of the enhanced disinfection being the result of the greater intracellular diffusion of free chlorine, caused by the cell surface disruption induced by ozone. The practical implications of this synergistic sequential inactivation with ozone followed by free chlorine were discussed, along with the issue of selecting the amount of each oxidant to use in water treatment plants, to achieve a specific level of microorganism inactivation.  相似文献   

13.
There appear to be interactions in the distribution system that complicate the ability to use AOC/BDOC as an independent assessment of regrowth potential. Two such complications are the limitation of the assays themselves and the potential interaction between the organic carbon concentration with the presence of disinfectants and pipe materials. To address these interactions, a series of experiments spanning several years have been conducted in model distribution systems at the Center for Biofilm Engineering (CBE) using soil-derived humics. When compared to easily utilized organics, humic substances supported the same order of magnitude of biofilm organisms. As carbon concentration was increased from 500 to 1000 to 2000 ppb, there was no increase in growth rate of the organisms, suggesting zero-order kinetics. If the system was chlorinated, there was less biomass, but growth rates were higher. In the presence of corrosion products, humic-fed systems supported more organisms than a control system fed biologically treated water. When free chlorine was maintained at a residual of about 0.2 mg/l, biofilm numbers on the surfaces were reduced. Phosphate alone did not result in fewer bacteria, while a combination of chorine and phosphate had the best results (lowest biofilm numbers). Adjustment to pH 9 was not effective. Recently completed work compared increasing levels of humic substances in the presence of free chlorine and monochloramine on biofilm growth on a number of surfaces (PVC, epoxy, cement, ductile iron). As the concentration of humic substances was increased from 0, 0.5 to 2 mg/l, there was an increase in biofilm numbers on all surfaces. This effect was the most pronounced on iron surfaces. These results illustrate that carbon compounds not measured by the BDOC or AOC tests may profoundly influence biofilm numbers. In addition, iron surfaces are at much higher risk for elevated biofilm counts in the presence of humic substances, even if disinfection is practiced. However, corrosion control may mitigate this interaction.  相似文献   

14.
In a chloraminated drinking water distribution system, monochloramine decays due to chemical and microbiological reactions. For modeling and operational control purposes, it is necessary to know the relative contribution of each type of reaction, but there was no method to quantify these contributions separately. A simple method was developed to do so. It compares monochloramine decay rates of processed (0.2 microm filtered or microbiologically inhibited by adding 100 microg of silver/L as silver nitrate) and unprocessed samples under controlled temperature conditions. The term microbial decay factor (Fm) was defined and derived from this method, to characterize the relative contribution of microbiologically assisted monochloramine decay to the total monochloramine decay observed in bulk water. Fm is the ratio between microbiologically assisted monochloramine decay and chemical decay of a given water sample measured at 20 degrees C. One possible use of the method is illustrated, where a service reservoir's bulk and inlet waters were sampled twice and analyzed for both the traditional indicators and the microbial decay factor. The microbial decay factor values alone indicated that more microbiologically assisted monochloramine decay was occurring in one bulk water than the other. In contrast, traditional nitrification indicators failed to show any difference. Further analysis showed that the microbial decay factor is more sensitive and that it alone can provide an early warning.  相似文献   

15.
The potent carcinogen, N-nitrosodimethylamine (NDMA), is produced during disinfection of municipal wastewater effluent from the reaction of monochloramine and organic nitrogen-containing precursors. To delineate the sources and fate of NDMA precursors during municipal wastewater treatment, NDMA formation was measured after extended chloramination of both model precursors and samples from conventional and advanced wastewater treatment plants. Of the model precursors, only dimethylamine, tertiary amines with dimethylamine functional groups, and dimethylamides formed significant NDMA concentrations upon chloramination. In samples from municipal wastewater treatment plants, dissolved NDMA precursors always were present in primary and secondary effluents. Biological treatment effectively removed the known NDMA precursor dimethylamine, lowering its concentration to levels that could not produce significant quantities of NDMA upon chlorine disinfection. However, biological treatment was less effective at removing other dissolved NDMA precursors, even after extended biological treatment. Significant concentrations of particle-associated NDMA precursors only were detected in secondary effluent at treatment plants that recycled water from sludge thickening operations in which dimethylamine-based synthetic polymers were used. Effective strategies for the prevention of NDMA formation during wastewater chlorination include ammonia removal by nitrification to preclude chloramine formation during chlorine disinfection, elimination of dimethylamine-based polymers, and use of filtration and reverse osmosis to remove particle-associated precursors and dissolved precursors, respectively.  相似文献   

16.
设计了一种可现场制备次氯酸消毒水,并在线检测、自动控制其游离氯浓度及pH值的系统。系统以PLC为主要控制器,以触摸屏实现人机交互,采用以PID为基础的控制算法,通过添加次氯酸钠和柠檬酸,对消毒水游离氯浓度和pH值进行调节。游离氯浓度调节范围40~180mg/L,pH值调节范围6.0~7.0。使用Matlab进行PID控制过程仿真和参数整定。进行了联机试验,游离氯浓度控制误差小于10mg/L,pH值控制误差小于0.2。  相似文献   

17.
Nitrification can occur in water distribution systems where chloramines are used as the disinfectant. The resulting product, nitrite, can be oxidized by monochloramine and hypochlorous acid (HOCl), potentially leading to rapid monochloramine loss. This research characterizes the importance of the HOCl reaction, which has typically been ignored because of HOCl's low concentration. Also, the general acid-assisted rate constants for carbonic acid and bicarbonate ion were estimated for the monochloramine reaction. The nitrite oxidation reactions were incorporated into a widely accepted chloramine autodecomposition model, providing a comprehensive model that was implemented in AQUASIM. Batch kinetic experiments were conducted to evaluate the significance of the HOCl reaction and to estimate carbonate buffer rate constants for the monochloramine reaction. The experimental data and model simulations indicated that HOCl may be responsible for up to 60% of the nitrite oxidation, and that the relative importance of the HOCl reaction for typical chloramination conditions peaks between pH 7.5 and 8.5, generally increasing with (1) decreasing nitrite concentration, (2) increasing chlorine to nitrogen mass ratio, and (3) decreasing monochloramine concentration. Therefore, nitrite's reaction with HOCl may be important during chloramination and should be included in water quality models to simulate nitrite and monochloramine's fate.  相似文献   

18.
Triclosan, widely employed as an antimicrobial additive in many household personal care products, has recently been detected in wastewater treatment plant effluents and in source waters used for drinking water supplies. Chloramines used either as alternative disinfectants in drinking water treatment or formed during chlorination of nonnitrified wastewater effluents have the potential to react with triclosan. This study examined triclosan reactivity in chloraminated waters over the pH range of 6.5-10.5. Experimental and modeling results show that monochloramine directly reacts with the phenolate form of triclosan; however, the reaction is relatively slow as evinced by the second-order rate constant k(ArO)-NH2Cl = 0.025 M(-1) s(-1). Kinetic modeling indicates that for pH values less than 9.5, reactions between triclosan and two monochloramine autodecomposition intermediates, hypochlorous acid (k(ArO)-HOC = 5.4 x 10(3) M(-1) s(-1)) and dichloramine (k(ArO)-NHCl2 = 60 M(-1) s(-1)), are responsible for a significant percentage of the observed triclosan decay. The products of these reactions include three chlorinated triclosan byproducts as well as 2,4-dichlorophenol and 2,4,6-trichlorophenol. Low levels of chloroform were detected after 1 week at pH values of 6.5 and 7.5. The slow reactivity of triclosan in the presence of chloramines explains the recalcitrance of this species in nonnitrified wastewater effluents.  相似文献   

19.
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.  相似文献   

20.
Process wash water and washed products from three different fresh produce processing lines were characterized at commercial scale. Different physicochemical and microbiological characteristics of wash water were measured. Great variability between processing lines on the physicochemical quality of process wash water was observed, caused in part by the type of produce washed. The relationship between lower aerobic mesophilic bacteria and higher free chlorine (FC) concentrations in wash water was detected (Pearson's correlation coefficient (PCC) = −0.53). Independently of the FC concentration, most of the water samples (>80%) showed presence of cultivable (limit of detection 1 CFU/100 mL), probably caused by the uncontrolled pH conditions. Higher values of FC and oxidation-reduction potential (ORP) in wash water were related to lower microbial load in washed produce (PCC = −0.82, and − 0.79, respectively). Higher concentration of chlorine was linked to a higher presence of disinfection by-products (DBPs) in the wash water, and washing in chlorinated water led to a significant increase in the concentration of DBPs in produce. However, the accumulation of trihalomethanes (THMs) in process wash water was not correlated with higher concentrations of these DBPs in produce.Industrial relevanceThe washing step of fresh produce processing lines is a critical process. The dose of disinfectants needs to be adequately optimized to avoid microbial contamination without generating the accumulation of disinfection by-products (DBPs). In this study, critical parameters that influence the efficacy of water disinfection and the occurrence of DBPs in fresh produce processing lines were identified under commercial conditions. The results evidenced that monitoring and control of pH play a critical role by maximizing the concentration of the most active form of chlorine in the water. The parameter UV254 measured on-line in the washing tank, can be suggested as a suitable indicator of the presence of organic matter in fresh produce wash water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号