首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to test the effect of hypotonicity and extracellular Ca2+ (Cao) on cell volume and membrane potential (VM) in barnacle muscle cells. Under isotonic conditions the resting VM of isolated cells mounted in the experimental chamber exposed to either Ca(2+)-free or Ca(2+)-containing (11 mM) solutions was -46.3 +/- 1.0 mV (n = 24) and -56.2 +/- 0.9 mV (n = 38), respectively. In the absence of Cao, the cells depolarized at a rate of 2.3 +/- 0.47 mV/hr; the presence of Cao reduced this rate of depolarization by 2.9-fold. Both in the absence or presence of Cao, the cells swelled in response to hypotonicity but underwent regulatory volume decrease (RVD) when Cao was present. Addition of the Ca2+ channel blocker, verapamil (0.1 mM), inhibited the Cao-dependent RVD. The percentage of cells responding with RVD increased with larger hypotonic challenges. There was a Cao-independent direct relationship between cell swelling and membrane depolarization which can be explained by dilution of the concentration of intracellular K+ ([K+]i). RVD was accompanied by a small hyperpolarization (3.0 +/- 0.38 mV/2 hr) which may represent increases in [K+]i during cell shrinking and activation of a conductive pathway. The results indicate the following: (1) the presence of Cao stabilizes VM; (2) cell swelling produces a depolarization which can be explained by dilution of [K+]i; (3) cell swelling activates a verapamil-sensitive Ca2+ influx responsible for promoting RVD; and (4) RVD is accompanied by a hyperpolarization which may result from activation of a conductive pathway.  相似文献   

2.
We have characterized two different types of Cl- currents in calf pulmonary artery endothelial (CPAE) cells by using a combined patch-clamp and Fura-2 microfluorescence technique to measure simultaneously ionic currents and the intracellular Ca2+ concentration, [Ca2+]i. Exposure of CPAE cells to 28% hypotonic solution induces cell swelling without a change in membrane capacitance and [Ca2+]i, and concomitantly activates a current. This current, I(Cl, vol), is closely correlated with the changes in cell volume and shows a modest outward rectification. It slowly inactivates at potentials more positive than +60 mV but is time- and voltage-independent at other potentials. Increase in [Ca2+]i by different maneuvers, such as application of vasoactive agonists (ATP), ionomycin, or loading of the cells directly with Ca2+ also activates a Cl- current, I(Cl, Ca). This current slowly activates at positive potentials, inactivates quickly at negative potentials and shows strong outward rectification. A time-independent component of the current activated by elevation of [Ca2+]i alone can be inhibited by cell shrinking by exposing the cells to hypertonic solution, indicating that an increase in [Ca2+]i also co-activates I(Cl, vol). Forskolin or cAMP never activated a current in CPAE cells, which indicates the lack of cAMP-activated channels in these cells. There is also no evidence for the existence of voltage-gated Cl- channels in resting, nonstimulated cells. Challenging a cell with elevated [Ca2+]i and hypotonic solutions activated I(Cl, vol) on top of I(Cl, Ca), suggesting that I(Cl, Ca) and I(Cl, vol) are different channels. We conclude that CPAE cells do not express voltage-gated (ClC-type) or cAMP-gated (CFTR-type) Cl- channels, but activate large Cl- currents after volume (mechanical?) or chemical (Ca2+) stimulation.  相似文献   

3.
A Ca2+-activated (ICl,Ca) and a swelling-activated anion current (ICl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+]i), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl- concentration. ICl,Ca current density increased with increasing [Ca2+]i, and this current was abolished by lowering [Ca2+]i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA). In contrast, activation of ICl,vol did not require an increase in [Ca2+]i. The kinetics of ICl,Ca and ICl,vol were different: at depolarized potentials, ICl,Ca as activated in a [Ca2+]i- and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, ICl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of ICl, vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I- > Cl- > gluconate. ICl,Ca was inhibited by niflumic acid (100 micron), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 micron) and 4, 4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 100 micron), niflumic acid being the most potent inhibitor. In contrast, ICl,vol was unaffected by niflumic acid (100 micron), but abolished by tamoxifen (10 micron). Thus, in Ehrlich cells, separate chloride currents, ICl,Ca and ICl,vol, are activated by an increase in [Ca2+]i and by cell swelling, respectively.  相似文献   

4.
The effect of gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) in cultured prenatal rat cortical neurons was investigated using fluorescence imaging. GABA or muscimol, but not baclofen, increased [Ca2+]i in a dose-dependent manner. The GABAA receptor antagonists, bicuculline and picrotoxin, inhibited the GABA response. Furosemide, an inhibitor of the Na+/K+/2Cl- cotransporter, inhibited the GABA response in a noncompetitive manner. Ethacrynic acid, an inhibitor of an ATP-dependent Cl- pump, also inhibited the GABA-induced increased in [Ca2+]i. These results suggest a role for Cl- transport processes in the GABA response. The coapplication of GABA and high K+ led to a non-additive increase in the GABA response. The GABA response was also inhibited by nifedipine, a voltage-gated Ca2+ channel blocker, and abolished by the absence of extracellular Ca2+. Results indicate that the GABA response shares a common pathway of Ca2+ movement with the high K(+)-induced response. These observations suggest that the stimulation with GABA results in Ca2+ influx through voltage-gated Ca2+ channels, and that these effects are dependent on Cl- transport systems.  相似文献   

5.
Glucose stimulation of pancreatic beta-cell insulin secretion is closely coupled to alterations in ion channel conductances and intracellular Ca2+ ([Ca2+]i). To further examine this relationship after augmentation of voltage-dependent K+ channel expression, transgenic mice were produced which specifically overexpress a human insulinoma-derived, tetraethylammonium (TEA)-insensitive delayed rectifier K+ channel in their pancreatic beta-cells as shown by immunoblot of isolated islets and immunohistochemical analysis of pancreas sections. Whole-cell current recordings confirmed the presence of high amplitude TEA-resistant K+ currents in transgenic islet cells, whose expression correlated with hyperglycemia and hypoinsulinemia. Stable overexpression of the channel in insulinoma cells attenuated glucose-activated increases in [Ca2+]i and prevented the induction of TEA-dependent [Ca2+]i oscillations. These results, employing the first ion channel transgenic mouse, demonstrate the importance of membrane potential regulation in excitation-secretion coupling in the pancreatic beta-cell.  相似文献   

6.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

7.
We have found chicken granulosa cells to be excitable. Experiments using the whole-cell patch-clamp technique showed that they had membrane resting potentials of -62 +/- 3 mV (n = 8) and generated action potentials, either in response to 10-ms depolarizing current pulses or, on occasion, spontaneously. The action potentials persisted in a Na(+)-free bath and were reversibly blocked by 4 mM Co2+. They lasted 0.9-3.0s with 64 mM Cl- in the pipette, were shortened 67 +/- 8% by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 20 microM), and lengthened to 8.7 +/- 2.2 when the Cl- equilibrium potential (Vcl) was changed from -20 mV to -2 mV by using 134 mM Cl- in the pipette. With conventional whole-cell voltage-clamp, slowly activating and inactivating currents, which reached maximum amplitude after 0.35-1.40 s, were evoked by depolarizing voltage steps. These slow currents activated between voltage steps of -60 mV and -50 mV and reached a maximum inward amplitude at about -40 mV. Changing the Cl- concentration in the pipette (VCl of -2MV or -20 mV) or bath (VCl of -2 mV or + 18 mV) shifted their reversal potential in a direction consistent with a Cl- electrode. They were inhibited by the Cl- channel antagonists 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.5 mM), NPPB (20 microM), and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 0.5 mM). The slow currents were blocked by Ca2+ deprivation, or by CO2+ (4 mM), or by replacing external Ca2+ with Ba2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. We have studied the effects of mibefradil, a novel calcium antagonist, on the resting potential and ion channel activity of macrovascular endothelial cells (calf pulmonary artery endothelial cells, CPAE). The patch clamp technique was used to measure ionic currents and the Fura-II microfluorescence technique to monitor changes in the intracellular Ca2+ concentration, [Ca2+]i. 2. Mibefradil (10 microM) hyperpolarized the membrane potential of CPAE cells from its mean control value of -26.6 +/- 0.6 mV (n = 7) to -59.8 +/- 1.7 mV (n = 6). A depolarizing effect was observed at higher concentrations (-13.7 +/- 0.6 mV, n = 4, 30 microM mibefradil). 3. Mibefradil inhibited Ca(2+)-activated Cl- currents, ICl,Ca, activated by loading CPAE cells via the patch pipette with 500 nM free Ca2+ (Ki = 4.7 +/- 0.18 microM, n = 8). 4. Mibefradil also inhibited volume-sensitive Cl- currents, ICl,vol, activated by challenging CPAE cells with a 27% hypotonic solution (Ki = 5.4 +/- 0.22 microM, n = 6). 5. The inwardly rectifying K+ channel, IRK, was not affected by mibefradil at concentrations up to 30 microM. 6. Ca2+ entry activated by store depletion, as assessed by the rate of [Ca2+]i-increase upon reapplication of 10 mM extracellular Ca2+ to store-depleted cells, was inhibited by 17.6 +/- 6.5% (n = 8) in the presence of 10 microM mibefradil. 7. Mibefradil inhibited proliferation of CPAE cells. Half-maximal inhibition was found at 1.7 +/- 0.12 microM (n = 3), which is similar to the concentration for half-maximal block of Cl- channels. 8. These actions of mibefradil on Cl- channels and the concomitant changes in resting potential might, in addition to its effect on T-type Ca2+ channels, be an important target for modulation of cardiovascular function under normal and pathological conditions.  相似文献   

9.
1. The effects of the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on the ionic currents of rat carotid body type I cells were investigated by use of whole-cell and outside-out patch clamp techniques. 2. NDGA (5-50 microM) produced a concentration-dependent inhibition of whole-cell K+ currents at all activating test potentials (holding potential -70 mV). The time-course of the inhibition was also concentration-dependent and the effects of NDGA were only reversible following brief periods of exposure (<2 min). Another lipoxygenase inhibitor, phenidone (5 microM), was without effect on whole-cell K+ currents in carotid body type I cells. 3. NDGA (5-50 microM) also inhibited whole-cell Ca2+ channel currents (recorded with Ba2+ as charge carrier) in a concentration-dependent manner. 4. Isolation of voltage-gated K+ channels by use of high [Mg2+] (6 mM), low [Ca2+] (0.1 mM) solutions revealed a direct inhibition of the voltage-sensitive component of the whole-cell K+ current by NDGA (50 microM). 5. In excised, outside-out patches NDGA (20-50 microM) increased large conductance, Ca2+ activated K+ channel activity approximately 10 fold, an effect which could be reversed by either tetraethylammonium (10 mM) or charybdotoxin (30 nM). 6. It is concluded that NDGA activates maxi-K+ channels in carotid body type I cells and over the same concentration range inhibits voltage-sensitive K+ and Ca2+ channels. The inhibition of whole cell K+ currents seen is most likely due to a combination of direct inhibition of the voltage-sensitive K+ current and indirect inhibition of maxi-K+ channel activity through blockade of Ca2+ channels.  相似文献   

10.
Quantitative time-resolved measurements of cytosolic Ca2+ release by photolysis of caged InsP3 have been made in single rat submandibular cells using patch clamp whole-cell recording to measure the Ca2+-activated Cl- and K+ currents. Photolytic release of InsP3 from caged InsP3 at 100 Joules caused transient inward (V(H) = 60 mV) and outward (V(H) = 0 mV) currents, which were nearly symmetric in their time course. The inward current was reduced when pipette Cl- concentration was decreased, and the outward current was suppressed by K+ channel blockers, indicating that they were carried by Cl- and K+, respectively. Intracellular pre-loading of the InsP3 receptor antagonist heparin or the Ca2+ chelator EGTA clearly prevented both inward and outward currents, indicating that activation of Ca2+-dependent Cl- and K+ currents underlies the inward and the outward currents. At low flash intensities, InsP3 caused Ca2+ release which normally activated the K+ and Cl- currents in a mono-transient manner. At higher intensities, however, InsP3 induced an additional delayed outward K+ current (I[K,(delay)]). I[K(delay)] was independent of the initial K+ current, independent of extracellular Ca2+, inhibited by TEA, and gradually prolongated by repeated flashes. The photolytic release of Ca2+ from caged Ca2+ did not mimic the I[K(delay)]. It is suggested that Ca2+ releases from the InsP3-sensitive pools in an InsP3 concentration-dependent manner. Low concentrations of InsP3 induce the transient Ca2+-dependent Cl- and K+ currents, which reflects the local Ca2+ release, whereas high concentrations of InsP3 induce a delayed Ca2+-dependent K+ current, which may reflect the Ca2+ wave propagation.  相似文献   

11.
We investigated the effects of potassium channel inhibitors on electrical activity, membrane ionic currents, intracellular calcium concentration ([Ca2+]i) and hormone release in GH3/B6 cells (a line of pituitary origin). Patch-clamp recordings show a two-component after hyperpolarization (AHP) following each action potential (current clamp) or a two-component tail current (voltage-clamp). Both components can be blocked by inhibiting Ca2+ influx. Application of D-tubocurarine (dTc) (20-500 microM) reversibly suppressed the slowly decaying Ca2+-activated K+ tail current (I AHPs) in a concentration-dependent manner. On the other hand, low doses of tetraethylammonium ions (TEA+) only blocked the rapidly decaying voltage- and Ca2+-activated K+ tail current (I AHPf). Therefore, GH3/B6 cells exhibit at least two quite distinct Ca2+-dependent K+ currents, which differ in size, voltage- and Ca2+-sensitivity, kinetics and pharmacology. These two currents also play quite separate roles in shaping the action potential. d-tubocurarine increased spontaneous Ca2+ action potential firing, whereas TEA increased action potential duration. Thus, both agents stimulated Ca2+ entry. I AHPs is activated by a transient increase in [Ca2+]i such as a thyrotrophin releasing hormone-induced Ca2+ mobilization. All the K+ channel inhibitors we tested: TEA, apamin, dTC and charybdotoxin, stimulated prolactin and growth hormone release in GH3/B6 cells. Our results show that I AHPs is a good sensor for subplasmalemmal Ca2+ and that dTc is a good pharmacological tool for studying this current.  相似文献   

12.
The membrane currents of primary cultured porcine granulosa cells have been studied using the whole-cell configuration of the patch-clamp technique. And effects of K+ channel blockers upon progesterone production of the cells have been also studied. The author has identified and characterized two types of K+ currents, transient outward current (Ito) and a delayed rectifier K+ current (Ik), and Ca2+ current (Ica). Ito and Ik were voltage -and calcium-dependent. Both of the currents were blocked by 4-aminopyridine (4-AP), a K+ channel blocker, but only Ik was sensitive to tetraethylammonium (TEA), another K+ channel blocker. Ica was inactivated within 50 ms of the test pulse. Nifedipine and verapamil, L-type Ca2+ channel blockers, did not suppress Ica even at a concentration of 10 microM. Tetramethrin (1 microM), a T-type Ca2+ channel blocker, decreased Ica. These findings suggested that the current was T-type Ca2+ current. LH and dibutyryl cAMP, potent stimulants of steroid production, attenuated Ito by 13.9 +/- 1.8% (n = 7) and 21.0 +/- 1.5% (n = 4), respectively. However, they did not affect Ik and Ica. These results indicated that LH did not modulate Ca2+ current directly, but it suppressed Ito through cAMP. 4-AP (0.2-5 mM) suppressed basal and LH-induced progesterone production of porcine granulosa cells dose-dependently, but TEA (2-10 mM) did not influence progesterone production. These data suggest that Ito may play a role in steroid secretion or other functions in granulosa cells.  相似文献   

13.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

14.
15.
To determine whether functional Ca2+ channels are present in vestibular dark cells, changes in intracellular Ca2+ concentration ([Ca2+]i) due to K+ applications were measured using the Ca(2+)-sensitive dye (fura-2) and patchclamp whole-cell recordings were made in dark cells isolated from the ampullae of the semicircular canal of the guinea pig. Exchange of the external solution with a buffer medium containing a high K+ concentration (80 mM K+ or 150 mM K+) caused a concentration-dependent increase in [Ca2+]i in vestibular dark cells. Application of 1 microM nifedipine as a Ca2+ channel antagonist completely blocked the increase in [Ca2+]i. Further treatment with 10 microM BAY K 8644 as a Ca2+ channel agonist caused an increase in [Ca2+]i. In the patch-clamp whole-cell recordings a 1-s depolarizing pulse given into the dark cell in the presence of a high barium concentration (50 mM Ba2+) induced an inward current. In determining the current-voltage relationship, a current was detected at a potential that depolarized at-50 mV and was maximal at +10 mV. This inward current was completely blocked by 1 mM La3+ as a Ca2+ channel antagonist. These findings suggest the presence of voltage-dependent Ca2+ channels in dark cells, which have a presumed function in the regulation of [Ca2+]i in the vestibular endolymph.  相似文献   

16.
1. K+ and Cl- conductances and their putative regulation have been characterized in the rat colonic epithelium by Ussing-chamber experiments, whole-cell and single-channel patch-clamp recordings. 2. The apical Cl- conductance is under the control of intracellular cAMP. An increase in the concentration of this second messenger induces transepithelial Cl- secretion due to the activation of an apical 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB)- and glibenclamide-sensitive Cl- conductance. 3. In addition to the apical Cl- conductance, the basolateral membrane is equipped with Cl- channels. They are stimulated by cell swelling and play a role in cell volume regulation and transepithelial Cl- absorption. 4. The basolateral K+ conductance is under the dominant control of intracellular Ca2+. An increase in the cytosolic Ca2+ concentration leads to the opening of basolateral K+ channels, which causes a hyperpolarization of the cell membrane, indirectly supporting Cl- secretion owing to an increase in the driving force for Cl- exit. The predominant effect of cAMP on the basolateral K+ conductance is an inhibitory one, probably due to a decrease in the intracellular Ca2+ concentration. 5. The apical K+ conductance, which is involved in transepithelial K+ secretion, is stimulated by an increase in the intracellular Ca2+ concentration. 6. The differential regulation of apical and basolateral ion conductances in the epithelium of the rat distal colon provides an interesting example for the mechanisms underlying vectorial transport of ions across polarized cells.  相似文献   

17.
Basal forebrain cholinergic neurons are severely depleted early in Alzheimer's disease and appear particularly susceptible to amyloid beta-peptide (A beta) toxicity in vivo. To model this effect in vitro, a cholinergic septal cell line (SN56) was exposed to A beta. SN56 cells exhibited a tetraethylammonium (TEA)-sensitive outward K+ current with delayed rectifier characteristics. Increases of 64% (+/-19; p < 0.02) and 44% (+/-12; p < 0.02) in K+ current density were noted 6-12 and 12-18 h following the addition of A beta to SN56 cell cultures, respectively. Morphological observation and staining for cell viability showed that 25 +/- 4 and 39 +/- 4% of SN56 cells were dead after 48- and 96-h exposures to A beta, respectively. Perfusion of SN56 cells with 10-20 mM TEA blocked 71 +/- 6 to 92 +/- 2% of the outward currents, widened action potentials, elevated [Ca2+]i, and inhibited 89 +/- 14 and 68 +/- 14% of the A beta toxicity. High [K+]o, which depolarizes cell membranes and increases [Ca2+]i, also protected SN56 cells from A beta toxicity. This effect appeared specific since glucose deprivation of SN56 cells did not alter K+ current density and TEA did not protect these cells from hypoglycemic cell death. Furthermore, A beta was toxic to a dopaminergic cell line (MES23.5) that expressed a K+ current with delayed rectifier characteristics; K+ current density was not altered by A beta and MES23.5 cells were not protected by TEA from A beta toxicity. In contrast, a noncholinergic septal cell line (SN48) that shows minimal outward K+ currents was resistant to the toxicity of A beta. These data suggest that a K+ channel with delayed rectifier characteristics may play an important role in A beta-mediated toxicity for septal cholinergic cells.  相似文献   

18.
Effects of a novel dihydropyridine type of antihypertensive drug, cilnidipine, on the regulation of the catecholamine secretion closely linked to the intracellular Ca2+ were examined using nerve growth factor (NGF)-differentiated rat pheochromocytoma PC12 cells. By measuring catecholamine secretion with high-performance liquid chromatography coupled with an electrochemical detector, we showed that high K+ stimulation evoked dopamine release from PC12 cells both before and after NGF treatments. Cilnidipine depressed dopamine release both from NGF-treated and untreated PC12 cells in a concentration-dependent manner. In contrast, inhibition by nifedipine was markedly decreased in the differentiated PC12 cells. With intracellular Ca2+ concentration ([Ca2+]i) measurements using fura 2, the elevation of high K+-evoked [Ca2+]i was separated into nifedipine-sensitive and -resistant components. The nifedipine-resistant [Ca2+]i increase was also blocked by cilnidipine, as well as omega-conotoxin-GVIA. By the use of the conventional whole-cell patch-clamp technique, the compositions of the high-voltage-activated Ca2+ channel currents in the NGF-treated PC12 cells were divided into types: L-type, N-type, and residual current components. It was also estimated that cilnidipine at 1 and 3 micromol/L strongly blocked the N-type current without affecting the residual current. These results suggest that cilnidipine inhibits catecholamine secretion from differentiated PC12 cells by blocking Ca2+ influx through the N-type Ca2+ channel, in addition to its well-known action on the L-type Ca2+ channel.  相似文献   

19.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

20.
The supernatant from a suspension of Ehrlich cells exposed to centrifugation at 700xg for 45 s induced a transient increase in the intracellular concentration of free, cytosolic Ca2+, [Ca2+]i, as well as activation of an outwardly rectifying whole-cell current when added to a suspension of non-stimulated cells. These effects were inhibited by suramin, a non-specific P2 receptor antagonist, and mimicked by ATP. Reversed phase HPLC analysis revealed that the supernatant from Ehrlich cells exposed to centrifugation contained 2. 6+/-0.2 microM ATP, and that the mechanical stress-induced release of ATP was inhibited by glibenclamide and verapamil, non-specific inhibitors of the cystic fibrosis transmembrane conductance regulator and P-glycoprotein, respectively. After trypan blue staining, less than 0.5% of the cells were unable to extrude the dye. Addition of extracellular ATP induced a suramin-sensitive, transient, concentration-dependent increase in [Ca2+]i, activation of an outwardly rectifying whole-cell current and a hyperpolarization of the plasma membrane. The ATP-induced hyperpolarization of the plasma membrane was strongly inhibited in the presence of charybdotoxin (ChTX), an inhibitor of several Ca2+-activated K+ channels, suggesting that stimulation of P2 receptors in Ehrlich cells evokes a Ca2+-activated K+ current. The relative potencies of several nucleotides (ATP, UTP, ADP, 2-MeSATP, alpha,beta-MeATP, bzATP) in eliciting an increase in [Ca2+]i, as well as the effect of repetitive addition of nucleotides were investigated. The results lead us to conclude that mechanical stimulation of Ehrlich cells leads to release of ATP, which in turn stimulates both P2Y1 and P2Y2 receptors, resulting in Ca2+ influx as well as release and activation of an outwardly rectifying whole-cell current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号