首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
直接凝固注模成型技术   总被引:15,自引:0,他引:15  
高濂 《无机材料学报》1998,13(3):269-274
直接凝固注模成型是瑞士苏黎世联邦高等工业学院L.J.Gauckler实验室发明的一项新的成型技术,具有素坯密度高、密度均匀、坯体收缩和形变极小等优点,特别适用于大尺寸、复杂形状的陶瓷部件的成型,有广阔的应用前景.本文着重介绍了直接凝固注模成型的基本原理和技术关键.  相似文献   

2.
多孔氧化铝陶瓷的凝胶注模成型   总被引:14,自引:0,他引:14  
曹小刚  田杰谟 《功能材料》2001,32(5):523-524,528
选用石墨粉作为造孔剂,加入已分散良好的氧化铝浆料中,球磨均匀后注模成型。成型后的坯体在1520℃保温烧结2h,获得了分布均匀,孔径为15-30μm的多孔氧化铝陶瓷。  相似文献   

3.
纳米Y-TZP凝胶注模成型的研究   总被引:12,自引:0,他引:12  
对纳米Y-TZP的浆料进行了凝胶注模成型.有机单体丙烯酸胺和交联剂N,N-亚甲基双丙烯酸胺的加入,不但起到使浆料凝胶的作用,还可以大大降低浆料粘度,改善浆料的流变性.有机单体、交联剂、引发剂均有其合适的用量范围.与干压法、等静压法相比,用凝胶注模法成型的素坯密度高、显微结构均匀、烧结体的断裂韧性也较等静压法高.  相似文献   

4.
多孔氧化铝陶瓷的凝胶注模成型   总被引:2,自引:0,他引:2  
曹小刚  田杰谟 《材料导报》2000,(Z10):102-104
选用石墨粉作为造孔剂,加入到已分散良好的氧化铝浆料中,球磨均匀后注模成型。成型后的坯体在1520℃保温2h,获得了分布均匀、孔径为15~30μm的多孔氧化铝陶瓷。本文对浆料的配制进行了详细地讨论。  相似文献   

5.
BaTiO3陶瓷粉体凝胶注模成型的研究   总被引:2,自引:0,他引:2  
为了研究BaTiO3粉体的凝胶注模成型,以聚甲基丙稀酰胺(PMAA—NH4)为分散剂,通过球磨制备稳定分散的BaTiO3浆料.采用正交实验设计原则,讨论了有机单体、交联剂和引发剂的用量对浆料的固化时间、坯体强度和密度的影响,确定最佳加入量(质量分数)分别为4%,1.5%和0.02%.在1340℃下烧结得到的BaTiO3陶瓷的晶粒尺寸均匀,气孔较少,致密度高,具有良好的PTC特性。  相似文献   

6.
直接凝固注模成型(DCC)是利用陶瓷浆料粘度变化制备陶瓷坯体的先进成型方法,脱模时间长是限制其应用的主要问题.通过调整DCC工艺参数,减小充模前浆料的粘度以利于成形,而在充模后使浆料的粘度迅速增加,缩短脱模时间.将高固含量(体积分数为70%)低粘度的陶瓷浆料浇注到模具中,通过改变浆料的pH值或浆料离子浓度来改变其胶体化学行为,调节浆料流动性能;通过温度控制加速浆料凝固,使充模后10 min的浆料粘度与充模前浆料粘度比值达到13,3倍于传统浆料成型方法,充模后1 h即可得到有足够脱模强度的陶瓷坯体,效率显著提高.  相似文献   

7.
应用一种新的近净成型技术——凝胶注模成型技术,成功制备大尺寸、复杂形状医用多孔钛人造骨替代材料,并研究了凝胶注模成型工艺参数对浆料流动特性、坯体强度及烧结体孔隙、力学性能的影响。研究结果表明:预混液中有机单体的浓度、单体/交联剂比例以及固相含量是决定钛粉浆料表观粘度、Gelcasting坯体强度的重要参数;对于医用多孔钛植入材料的凝胶注模成型工艺,适合的顸混液单体浓度为30%(质量分数),单体,交联剂比例为120:1,浆料固相含量为34%(体积分数);1100℃保温1.5h是凝胶注模成型多孔钛较为适合的烧结工艺路线;所制得孔隙度46.5%、开孔隙度40.7%多孔钛的抗压强度158.6MPa、弹性模量8.5GPa,与自然骨基本匹配,适合作为人造骨替代材料。  相似文献   

8.
将凝胶离心成型工艺应用于316L-TiC复合粉末的坯体成型,研究了固含量对316L-TiC复合粉末浆料流变性的影响以及引发剂的加入量对粉末浆料固化时间的影响,分析了凝胶离心成型工艺中离心转速与316L-TiC坯体的密度和强度的关系。结果表明:以油酸作分散剂,制备稳定且流动性好的浆料的最佳固含量为55%(体积分数);引发剂的加入量为0.7%(占预混液的质量分数),采用自行设计的离心成型机,选择最佳转速3000r/min,制备出的坯体密度高、无残留气孔,相对密度64.3%,强度26.3MPa。坯体经真空脱胶1380℃烧结保温1h制备出316L-TiC合金管,烧结体收缩均匀无变形,TiC颗粒呈均匀分布。  相似文献   

9.
直接凝固注模成型SiC陶瓷——浆料凝固过程的研究   总被引:6,自引:1,他引:5  
直接凝固注模成型是一种新的(准)净尺寸成型陶瓷部件的方法,本文主要研究了此方法的关键步骤一浆料凝固过程,高固相含量(>55vol%)浆料从可浇注的低粘度状态转变为有一定强度的凝固态(坯体)主要有两种方法,即增加浆料中的电解质浓度和移动浆料的pH值至等电点。  相似文献   

10.
超高压成型制备Y-TZP纳米陶瓷   总被引:24,自引:0,他引:24  
研究了用超高压成型制备Y-TZP纳米陶瓷的新方法.通过采用新的成型方法,在5000吨六面顶压机上实现了高达3GPa的超高压成型,获得相对密度达60%的3mol%Y-ZrO陶瓷素坯,比在450MPa下冷等静压成型所得素坯的密度高出13%.这种超高压成型所得素坯具有极佳的烧结性能,可在1050~1100℃下经无压烧结致密化.研究表明,这种素坯烧结性能好的主要原因是素坯的相对密度比较高,从而大大增加了物质的迁移通道.由于烧结温度极低,有利于制备ZrO晶粒尺寸<100nm的纳米陶瓷。在1050℃/5h的条件下,可烧结得到相对密度达 99%以上的 Y-TZP纳米陶瓷,平均晶粒仅为 80nm.  相似文献   

11.
采用球磨对SiC粉体颗粒进行整形,并借助反应烧结制备SiC陶瓷密封材料,考察了颗粒整形对反应烧结SiC陶瓷成型、烧结性能、显微结构和力学性能的影响规律。结果表明,整形后的SiC颗粒的球形度高,粒径分布更为均匀;整形SiC粉体的振实密度和素坯密度明显提高,烧结体的显微结构更加均匀,主晶相为6H-SiC和Si,分布均匀,残炭很少;颗粒整形明显改善SiC陶瓷的成型性能及力学性能,当压力为15MPa时,整形后的SiC素坯密度为2.08g/cm~3,烧结体密度为3.06g/cm~3,抗弯强度和断裂韧性分别达到456MPa和3.87MPa·m1/2。  相似文献   

12.
以MgO-Al2O3-SiO2为烧结助剂,借助XRD、SEM、TEM、EDS、HRTEM等手段,研究了无压烧结氮化硅陶瓷材料的力学性能和显微结构,着重探讨了材料制备工艺、力学性能和显微结构之间的关系,通过调整制备工艺改善材料微观结构以提高材料的力学性能.强化球磨混合的试样经1780℃无压烧结3h后,抗折强度高达1.06GPa,洛氏硬度92,显微硬度14.2GPa,断裂韧性6.6MPa·m0.5.材料由长柱状β-Si3N4晶粒组成,晶粒具有较大的长径比,长柱晶的近圆晶粒尺寸0.3-0.8μm,长度3-6μm,长径比约7-10,显微结构均匀.  相似文献   

13.
以羟丙基甲基纤维素(HPMC)作为有机塑化剂, 采用挤出成型工艺常压烧结制备碳化硅陶瓷管材, 系统研究了羟丙基甲基纤维素含量对陶瓷管材性能的影响以及不同温度制度下碳化硅陶瓷显微结构变化. 研究结果表明, 陶瓷管材坯体的平均径向抗外压强度随着HPMC含量的增加呈增加趋势, 当HPMC含量为7.5wt%时达462MPa; 2200℃保温1h烧结陶瓷管材的致密度随着HPMC含量的改变没有明显的变化. 采用两步烧结法得到的碳化硅管材体积密度从3.00g/cm3增加到3.07g/cm3, 平均径向抗外压强度达540MPa, 致密度可达95.9%. 抛光面经化学腐蚀后的显微结构表明碳化硅颗粒出现异常长大, 有部分板状晶粒出现.  相似文献   

14.
采用球形纳米氧化铝颗粒制备氧化铝微晶陶瓷,研究造粒、烧结等工艺过程对陶瓷微观结构和力学性能的影响,并结合动力学计算分析球形颗粒在烧结过程中的传质特性。结果表明:通过液相造粒掺入0.8%(质量分数)的PVA能够优化球形颗粒的压制成型并提高坯体密度。烧结温度从1400℃提高至1550℃,陶瓷相对致密度由74.1%增大至97.5%,而晶粒尺寸由0.6μm仅增至1.4μm,这与球形颗粒自身稳定的形态及其堆积形成的均匀孔隙有关。在1550℃下烧结时间由30 min延长至120 min时,气孔率由4.8%降低至0.4%,晶粒尺寸则由1.2μm增至2.7μm。另外,通过动力学计算得出球形颗粒的烧结活化能为788 kJ/mol,证实球形颗粒在烧结前期和中期具有生长惰性,利于获得微晶结构。经1550℃保温90 min的陶瓷,其密度达到98.9%,平均晶粒尺寸仅为1.6μm,硬度达到26.4 GPa,弯曲强度为574 MPa。  相似文献   

15.
Linear relationships between mean strength and nitrogen weight gain are established for isostatically pressed silicon compacts nitrided to weight gains of less than 60%. For a particular silicon powder the relationship depends upon the isostatic pressure used in compact fabrication, i.e. the green density. A linear relationship between mean strength and nitrided density is also demonstrated and this is independent of green density for the particular compacts studied. The implications of these relationships are discussed and their potential value for developing high strength reaction sintered silicon nitride explained.  相似文献   

16.
以不同配比的Y2O3-Al2O3为烧结助剂, 通过添加3wt%的单分散β-Si3N4籽晶, 采用气压烧结制备了氮化硅陶瓷, 并对所得材料的相组成、密度、室温和高温力学性能及显微结构进行了研究. 结果表明: 不同烧结助剂配比的α-Si3N4粉体在1800℃保温2 h即全部转化为β-Si3N4, 且各烧结体的相对密度都达到了97%以上. 在6wt%Y2O3和4.5wt%Al2O3为烧结助剂时, 添加3wt%籽晶的样品其室温强度和1200℃高温强度分别提高了20%和16%, 断裂韧性提高了8%.  相似文献   

17.
以喷雾干燥的SiC-Al_2O_3-Y_2O_3造粒粉为原料,使用机械混合法得到复合粉体,通过激光选区烧结/冷等静压技术并结合液相烧结工艺制备出SiC陶瓷,对SiC陶瓷的物相组成、显微结构、抗弯强度及密度进行表征。结果表明:喷雾造粒粉平均粒径为39.43μm,球形度较高,流动性良好,适用于SLS成型;SLS成型最优参数为激光功率7W、扫描间距0.15mm、扫描速率2200mm/s、单层层厚0.15mm且CIP压力为80MPa时, SiC陶瓷素坯的性能最佳,抗弯强度为(2.23±0.10)MPa,密度为(1.31±0.05)g/cm^3;在1950℃下烧结2h后,样品发生了致密化,SiC陶瓷密度为(1.95±0.17)g/cm^3,相对密度为(60.81±5.31)%,抗弯强度为(55.43±4.04)MPa。  相似文献   

18.
水溶性胶态成型工艺制备氮化硅耐磨结构陶瓷   总被引:1,自引:0,他引:1  
以氮化硅粉末为原料, 采用水溶性胶态成型工艺制备高耐磨氮化硅陶瓷. 采用正交设计的方法来优化制备高品质注浆料, 并研究了掺杂分散剂后Zeta电位的变化. 同时, 还对氮化硅陶瓷烧结体的显微结构、力学性能和耐磨性能进行了研究. 结果表明: 当氮化硅浆料中固相体积分数为45%时, 可制得体积密度较高的精细氮化硅陶瓷材料, 断裂韧性可达7.21MPa·m1/2, 硬度为9.30GPa. 通过抗耐磨损实验研究表明: 干摩擦条件下, 氮化硅陶瓷发生了晶粒脆性断裂和脱落; 水润滑条件下, 摩擦表面产生了氢氧化硅 反应膜, 降低了磨损, 主要是化学腐蚀磨损.  相似文献   

19.
Zirconium carbide containing up to 40 wt% yttria-stabilized zirconia was sintered at 1800 to 2200° C in argon and carbon monoxide atmospheres in a graphite tube furnace. Well-dispersed fine powders containing 20 wt% ZrO2 or more, when formed into compacts with green densities of 55% or above, could be sintered to theoretical density in 1 h at 2000° C. The resulting microstructure consisted of a dispersed ZrO2 phase in a continuous zirconium oxi-carbide matrix. The fracture toughness and four-point bend strength were a maximum at 40 wt% ZrO2 and were 5.8 MPa m1/2 and 320 MPa, respectively. The fracture surface was irregular and primarily intergranular.  相似文献   

20.
An in-situ formed nano-composite consisting of silicon nitride and amorphous silicon oxynitride has been developed using conventional ceramic processing techniques. The phases present have been identified using x-ray diffraction, electron diffraction and Raman spectroscopy. The chemical composition has been determined using quantitative chemical analysis. The microstructure has been characterized using TEM. Results have shown a material having 300 nm sized gmins of silicon nitride surrounded by 20-50 nm grains of silicon nitride and amorphous silicon oxynitride. The material has a low bulk density of (2.6 g/cc), a Vickers Hardness of 1165 Kg/mm2 and a modulus of rupture of 200 MPa with an elastic modulus of 150 GPa. The fracture toughness is 1.5 MPa m1/2. Based on the fracture analysis, it is expected that the strength can be improved substantially. The material has a thermal expansion less than 2 × 10-6/C and a dielectric constant of 4.8 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号