共查询到20条相似文献,搜索用时 13 毫秒
1.
The suspended particle assemblage in complex coastal waters is a mixture of living phytoplankton, other autochthonous matter, and materials of terrestrial origin. The characterization of suspended particles is important for understanding regional primary productivity and rates of carbon sequestration, the fate of anthropogenic materials released to the coastal environment, as well as its effects on bulk optical properties, which influence the passive optical remote sensing of the coastal ocean. Here, the extensive bio-optical Plumes and Blooms data set is used to characterize the surface particle assemblage in the Santa Barbara Channel, California, a highly productive, upwelling-dominated, coastal site affected by episodic sediment inputs. Available variables sensitive to characteristics of the particle assemblage include particle beam attenuation and backscattering coefficients, High Performance Liquid Chromatography (HPLC) pigment concentration observations, chlorophyll and particulate organic carbon concentration, particulate and phytoplankton absorption coefficients, and Laser In-situ Scattering and Transmissometry (LISST) 100-X particle sizer observations. Comparisons among these particle assemblage proxy variables indicate good agreement and internal consistency among the data set. Correlations among chlorophyll concentration, particulate organic carbon concentration (POC), HPLC pigments, and proxies sensitive to the entire particle assemblage such as backscattering and LISST data strongly indicate that in spite of its coastal character, variability in the particle assemblage in the Santa Barbara Channel is dominated by its marine biogenic component. Relatively high estimates of the bulk real index of refraction and its positive correlation with chlorophyll and lithogenic silica concentration tentatively indicate that there is minerogenic particle influence in the Santa Barbara Channel that tends to covary with the phytoplankton blooms. Limitations of each particle assemblage proxy and remote-sensing applications are discussed. 相似文献
2.
The problem of the disagreement between cirrus crystal sizes determined remotely and by in situ measurements is shown to be due to inappropriate application of Mie theory. We retrieved the absorption optical depth at 8.3 and 11.1 mum from 11 tropical anvil cirrus clouds, using data from the High Resolution Infrared Radiation Sounder (HIRS). We related the absorption optical depth ratio between the two wavelengths to crystal size (the size was defined in terms of the crystal median mass dimension) by assuming Mie theory applied to ice spheres and anomalous diffraction theory (ADT) applied to hexagonal columns, hexagonal plates, bullet rosettes, and aggregates (polycrystals). The application of Mie theory to retrievals yielded crystal sizes approximately one third those obtained with ADT. The retrievals of crystal size by use of HIRS data are compared with measurements of habit and crystal size obtained from in situ measurements of tropical anvil cirrus particles. The results of the comparison show that ADT provides the more realistic retrieval. Moreover, we demonstrate that at infrared wavelengths retrieval of crystal size depends on assumed habit. The reason why Mie theory predicts smaller sizes than ADT is shown to result from particle geometry and enhanced absorption owing to the capture of photons from above the edge of the particle (tunneling). The contribution of particle geometry to absorption is three times greater than from tunneling, but this process enhances absorption by a further 35%. The complex angular momentum and T-matrix methods are used to show that the contribution to absorption by tunneling is diminished as the asphericity of spheroidal particles is increased. At an aspect ratio of 6 the contribution to the absorption that is due to tunneling is substantially reduced for oblate particles, whereas for prolate particles the tunneling contribution is reduced by 50% relative to the sphere. 相似文献
3.
A fiber-optical probe for pH sensing and real-time imaging is successfully fabricated by connecting a polymer imaging fiber and a gradient index (GRIN) lens rod which was modified with a sensing film. By employing an improved metallographic microscope, an optical system is designed to cooperate with the probe. This novel technique has high-quality imaging capabilities for observing remote samples while measuring pH. The linear range of the probe is pH 1.2-3.5. This technique overcomes the difficulty that high-quality images cannot be obtained when directly using conventional imaging bundles for pH sensing and imaging. As preliminary applications, the corrosion behavior of an iron screw and the reaction process of rust were investigated in buffer solutions of pH 2.0 and 2.9, respectively. The experiment demonstrated that the pH values of the analytes' surface were higher than that of buffer solutions due to the chemical reaction. It provides great potential for applications in optical multifunctional detection, especially in chemical sensing and biosensing. 相似文献
4.
Carter WH 《Applied optics》2002,41(27):5668-5671
A coherence theory describing the formation of a hologram by an interesting new technique is presented to improve the theoretical treatment given by Schilling and Templeton [Appl. Opt. 40, 5474 (2001)]. Properties of the hologram pattern are discussed, and some comments are made on its reconstruction. 相似文献
5.
6.
We examine the problem of uniqueness in the relationship between the remote-sensing reflectance (Rrs) and the inherent optical properties (IOPs) of ocean water. The results point to the fact that diffuse reflectance of plane irradiance from ocean water is inherently ambiguous. Furthermore, in the 400 < lambda < 750 nm region of the spectrum, Rrs(lambda) also suffers from ambiguity caused by the similarity in wavelength dependence of the coefficients of absorption by particulate matter and of absorption by colored dissolved organic matter. The absorption coefficients have overlapping exponential responses, which lead to the fact that more than one combination of IOPs can produce nearly the same Rrs spectrum. This ambiguity in absorption parameters demands that we identify the regions of the Rrs spectrum where we can isolate the effects that are due only to scattering by particulates and to absorption by pure water. The results indicate that the spectral shape of the absorption coefficient of phytoplankton, a(ph)(lambda), cannot be derived from a multiparameter fit to Rrs(lambda). However, the magnitude and the spectral dependence of the absorption coefficient can be estimated from the difference between the measured Rrs(lambda) and the best fit to Rrs(lambda) in terms of IOPs that exclude a(ph)(lambda). 相似文献
7.
Velghe S Haïdar R Guérineau N Tauvy M Rommeluère S Thétas S Dunet G Primot J 《Applied optics》2006,45(23):5903-5909
We propose to evaluate infrared lenses with a dedicated analyzer having the same mechanical interface as the usual cameras. The proposed analysis is based on a wavefront measurement and allows a diagnostic of possible internal defects of the analyzed lens. The infrared lens analyzer described is constituted with a quadriwave lateral shearing interferometer and works with a blackbody light. We describe the response of this interferometer and an innovative method to obtain the wavefront under test. We finally present the experimental analysis of long-wavelength infrared lenses and the particular case of a modified lens that generates a large spherical aberration. 相似文献
8.
A new optical monitoring system has been developed that allows recording of transmission spectra in the wavelength range between 400 and 920 nm of a growing optical coating during deposition. Several kinds of thin film sample have been prepared by use of a hybrid monitoring strategy that is essentially based on a combination of quartz monitoring and in situ transmission spectra measurements. We demonstrate and discuss the applicability of our system for reengineering procedures of high-low stacks and measurements of small vacuum or thermal shifts of optical coatings. 相似文献
9.
In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains. To investigate the effect of the representation of aggregates on electromagnetic scattering calculations, we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each consisting of between 4-12 hexagonal plates. The scattering properties of an individual aggregate ice particle are computed using either the discrete dipole approximation or an improved geometric optics method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over all geometries. The scattering properties of the aggregate representation closely agree with those computed from 1000 different aggregate geometries. As a result, the aggregate representation provides an accurate and computationally efficient way to represent all aggregates occurring within ice clouds. Furthermore, the aggregate representation can be used to study the influence of these complex ice particles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates are different from those associated with randomly oriented individual hexagonal plates. When aggregates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses. 相似文献
10.
The achievement of new satellite or airborne remote sensing instruments enables the more precise study of cities with metric spatial resolutions. For studies such as the radiative characterization of urban features, knowledge of the atmosphere and particularly of aerosols is required to perform first an atmospheric compensation of the remote sensing images. However, to our knowledge, no efficient aerosol characterization technique adapted both to urban areas and to very high spatial resolution images has yet been developed. The goal of this paper is so to present a new code to characterize aerosol optical properties, OSIS, adapted to urban remote sensing images of metric spatial resolution acquired in the visible and near-IR spectral domains. First, a new aerosol characterization method based on the observation of shadow/sun transitions is presented, offering the advantage to avoid the assessment of target reflectances. Its principle and the modeling of the signal used to solve the retrieval equation are then detailed. Finally, a sensitivity study of OSIS from synthetic images simulated by the radiative transfer code AMARTIS v2 is also presented. This study has shown an intrinsic precision of this tool of Δτ(a)=0.1.τ(a) ± (0.02 + 0.4.τ(a)) for retrieval of aerosol optical thicknesses. This study shows that OSIS is a powerful tool for aerosol characterization that has a precision similar to satellite products for the aerosol optical thicknesses retrieval and that can be applied to every very high spatial resolution instrument, multispectral or hyperspectral, airborne or satellite. 相似文献
11.
《Cold Regions Science and Technology》2009,58(2-3):99-106
Rapidly available and accurate information about the location and extent of avalanche events is important for avalanche forecasting, safety assessments for roads and ski resorts, verification of warning products, as well as for hazard mapping and avalanche model calibration/validation. Today, observations from individual experts in the field provide isolated information with very limited coverage. This study presents a methodology for an automated, systematic and wide-area detection and mapping of avalanche deposits using optical remote sensing data of high spatial and radiometric resolution. A processing chain, integrating directional, textural and spectral information, is developed using ADS40 airborne digital scanner data acquired over a test site near Davos, Switzerland. Though certain limitations exist, encouraging detection and mapping accuracies can be reported. The presented approach is a promising addition to existing field observation methods for remote regions, and can be applied in otherwise inaccessible areas. 相似文献
12.
Steiner H Jakusch M Kraft M Karlowatz M Baumann T Niessner R Konz W Brandenburg A Michel K Boussard-Plédel C Bureau B Lucas J Reichlin Y Katzir A Fleischmann N Staubmann K Allabashi R Bayona JM Mizaikoff B 《Applied spectroscopy》2003,57(6):607-613
A prototype mid-infrared sensor system for the determination of volatile organic pollutants in groundwater was developed and tested under real-world conditions. The sensor comprises a portable Fourier transform infrared spectrometer, coupled to the sensor head via mid-infrared transparent silver halide fiber-optic cables. A 10 cm unclad middle section of the 6-m-long fiber is coated with ethylene propylene copolymer in order to enrich the analytes within the penetration depth of the evanescent field protruding from the fiber sensor head. A mixture of tetrachloroethylene, dichlorobenzene, diethyl phthalate, and xylene isomers at concentrations in the low ppm region was investigated qualitatively and quantitatively in an artificial aquifer system filled with Munich gravel. This simulated real-world site at a pilot scale enables in situ studies of the sensor response and spreading of the pollutants injected into the system with controlled groundwater flow. The sensor head was immersed into a monitoring well of the aquifer system at a distance of 1 m downstream of the sample inlet and at a depth of 30 cm. Within one hour, the analytes were clearly identified in the fingerprint region of the IR spectrum (1300 to 700 cm(-1)). The results have been validated by head-space gas chromatography, using samples collected during the field measurement. Five out of six analytes could be discriminated simultaneously; for two of the analytes the quantitative results are in agreement with the reference analysis. 相似文献
13.
Roscoe HK Freshwater RA Wolfenden R Jones RL Fish DJ Harries JE South AM Oldham DJ 《Applied optics》1994,33(30):7126-7131
A new UV-visible spectrometer system that measures the absorption of light from stars and planets by constituents in the Earth's atmosphere is described. Because it can be used to make measurements at night, the system has a significant advantage for measuring polar constituents in winter, when conditions that might give rise to ozone loss are initiated. Other advantages arise from the use of a cooled two-dimensional CCD array as the detector: an array detector avoids spectral noise resulting from scintillation of stars or from clouds passing overhead and allows for the possibility of measuring several constituents simultaneously; its second dimension permits auroral light from the atmosphere adjacent to the star to be measured simultaneously and subtracted from the stellar light, and a modern low-noise CCD allows us to use a telescope of modest diameter. The few previous measurements of constituents made by the use of stellar absorption did not have these advantages. The instrument was configured for simplicity and ease of use in field measurements and was deployed outside in winter in Northern Sweden in 1991. Examples of ozone measurements are shown. 相似文献
14.
K. I. Bushmeleva I. I. Plyusnin P. E. Bushmelev S. U. Uvaisov 《Measurement Techniques》2011,54(3):294-299
We propose a computer model for a device for remote sensing of the underlying surface close to a gas pipeline, allowing us to calculate the ladar parameters so we can select their optimal design values and work up recommendations for remote sensing from on board an aircraft. 相似文献
15.
小波双三次插值搜索算法提高遥感图像分辨力 总被引:2,自引:1,他引:2
通过小波双三次插值中高频外推阈值门限选取与峰值信噪比变化关系的分析,提出了小波双三次插值搜索算法。该算法能够自动搜索到高频外推的最佳阈值门限,在不破坏光学遥感图像原始信息的情况下,提高图像的空间分辨力和峰值信噪比,有利于对图像的细节信息进行观察分析。实验表明,该算法的重建图像的峰值信噪比比全小波插值图像和小波双线性插值图像的峰值信噪比分别高6.5dB和2.4dB,熵提高到原图像的1.3倍,是一种提高光学遥感图像分辨力的有效算法。 相似文献
16.
It is demonstrated that remote detection of the maximum permissible concentrations of dangerous substances (hydrogen sulfide, mercaptan, ethylmercaptan) is possible only at inadmissibly short distances. 相似文献
17.
G A Bishop J R Starkey A Ihlenfeldt W J Williams D H Stedman 《Analytical chemistry》1989,61(10):671A-677A
18.
Porel S Venkatram N Rao DN Radhakrishnan TP 《Journal of nanoscience and nanotechnology》2007,7(6):1887-1892
We present an overview of the simple and environmentally benign protocol we have developed recently, for the in situ generation of metal nanoparticles inside polymer films by mild thermal annealing, leading to free-standing as well as supported thin films of nanoparticle-embedded polymer. The fabrication chemistry is discussed and spectroscopic/microscopic characterizations of silver and gold nanoparticles in poly(vinyl alcohol) film are presented. Optical limiting characteristics of the silver-polymer system are investigated in detail and preliminary results for the gold-polymer system are reported. 相似文献
19.
A new scanning airborne-aerosol lidar system that has the potential to be a valuable atmospheric remote-sensing tool has been developed. The system has the ability to scan both parallel and perpendicular to an aircraft's flight path, and this ability permits both the three-dimensional rendering of the aerosol structure below the aircraft and the measurement of aerosol extinction and optical depth. The system has been integrated into a NASA P-3 aircraft and during a recent flight was used to acquire excellent data with both scanning modes. The system design, the application of the across-track scanning data to the study of the atmospheric boundary layer, and the computation of optical depth derived from along-track scan data are reported. 相似文献
20.
We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier. 相似文献