首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The Lck protein, a Src family tyrosine kinase, plays a critical role in T cell maturation and activation. Dysregulation of Lck expression or Lck kinase activity has been implicated in T cell leukemias from mice to humans, although the mechanism underlying Lck-mediated oncogenesis is still largely unclear. We report here that both DNA binding activities and tyrosine phosphorylation of STAT3 and STAT5, but not STAT1, are constitutively enhanced in the mouse T cell lymphoma LSTRA, which is a well-characterized cell line that overexpresses Lck protein and exhibits high levels of Lck kinase activity. Furthermore, Janus kinase 1 (jak1) and Jak2 protein tyrosine kinases are constantly activated in these cells, as determined by their autophosphorylation in an in vitro kinase assay and increased levels of tyrosine phosphorylation on immunoblots. Therefore, like Src-transformed cells, Lck-overexpressing LSTRA cells also exhibit constitutive activation of distinct Jak and STAT proteins.  相似文献   

3.
Interleukin-5 (IL-5) regulates the growth and function of eosinophils. It induces rapid tyrosine phosphorylation of Lyn and Jak2 tyrosine kinases. The role of tyrosine phosphatases in IL-5 signal transduction has not been investigated. In this study, we provide first evidence that SH2 protein tyrosine phosphatase 2 (SHPTP2) phosphotyrosine phosphatase plays a key role in prevention of eosinophil death by IL-5. We found that IL-5 produced a rapid activation and tyrosine phosphorylation of SHPTP2 within 1 min. The tyrosine phosphorylated SHPTP2 was complexed with the adapter protein Grb2 in IL-5-stimulated eosinophils. Furthermore, SHPTP2 appeared to physically associate with beta common (betac) chain of the IL-5 receptor (IL-5betacR). The association of SHPTP2 with IL-5betacR was reconstituted using a synthetic phosphotyrosine-containing peptide, betac 605-624, encompassing tyrosine (Y)612. The binding to the phosphotyrosine-containing peptide increased the phosphatase activity of SHPTP2, whereas the same peptide with the phosphorylated Y612--> F mutation did not activate SHPTP2. Only SHPTP2 antisense oligonucleotides, but not sense SHPTP2, could inhibit tyrosine phosphorylation of microtubule-associated protein kinase, and reverse the eosinophil survival advantage provided by IL-5. Therefore, we conclude that the physical association of SHPTP2 with the phosphorylated betac receptor and Grb2 and its early activation are required for the coupling of the receptor to the Ras signaling pathway and for prevention of eosinophil death by IL-5.  相似文献   

4.
5.
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.  相似文献   

6.
7.
The high-affinity receptor (R) for IL-5 consists of a unique alpha chain (IL-5R alpha) and a beta chain (beta c) that is shared with the receptors for IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF). We defined two regions of IL-5R alpha for the IL-5-induced proliferative response, the expression of nuclear proto-oncogenes, and the tyrosine phosphorylation of cellular proteins including beta c, SH2/SH3-containing proteins and JAK2 kinase. In the studies described here, we demonstrate that IL-5, IL-3 or GM-CSF stimulation induces the tyrosine phosphorylation of JAK2, and to a lesser extent JAK1, and of STAT5. Mutational analysis revealed that one of the proline residues, particularly Pro352 and Pro355, in the membrane-proximal proline-rich sequence (Pro352-Pro353-X-Pro355) of the cytoplasmic domain of IL-5R alpha is required for cell proliferation, and for both JAK1 and JAK2 activation. In addition, transfectants expressing chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c responded to IL-5 for proliferation and tyrosine phosphorylation of JAK1. Intriguingly, electrophoretic mobility shift assay analysis revealed that STAT5 was activated in cells showing either JAK1 or JAK2 tyrosine phosphorylation. These results indicate that activation of JAK1, JAK2 and STAT5 is critical to coupling IL-5-induced tyrosine phosphorylation and ultimately mitogenesis, and that Pro352 and Pro355 in the proline-rich sequence appear to play more essential roles in cell growth and in both JAK1/STAT5 and JAK2/STAT5 activation than Pro353 does.  相似文献   

8.
9.
Activation and recruitment of eosinophils in allergic inflammation is in part mediated by chemoattractants and T-helper 2 (Th2)-derived cytokines. However, little is known concerning the signal transduction mechanisms by which this activation occurs. We have investigated tyrosine kinase-mediated activation of phosphatidylinositol 3-kinase (PI3K) and compared this with the activation of the p21ras-ERK signaling pathway in human eosinophils. The related cytokines interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF), all induced PI3K activity detected in antiphosphotyrosine immunoprecipitates. Furthermore, the chemoattractants platelet-activating factor (PAF), RANTES, and C5a were also able to induce phosphotyrosine-associated PI3K activity. Protein kinase B (PKB) is a downstream target of PI3K activation by growth factors. Induction of PKB phosphorylation in human eosinophils was transiently induced on activation with the cytokines IL-4 and IL-5, as well as the chemoattractants PAF, C5a, and RANTES showing a broad activation profile. Surprisingly, analysis of the activation of the mitogen-activated protein (MAP) kinases p44(ERK1) and p42(ERK2), showed that ERK2, but not ERK1, was transiently activated in human eosinophils after stimulation with IL-5 or PAF. Activation kinetics correlated with activation of p21ras by both cytokines and chemoattractants as measured by a novel assay for guanosine triphosphate (GTP)-loading. Finally, using specific inhibitors of both the p21ras-ERK and PI3K signaling pathways, a role was demonstrated for PI3K, but not p21ras-ERK, in activation of the serum-treated zymosan (STZ)-mediated respiratory burst in IL-5 and PAF-primed eosinophils. In summary, these data show that in human eosinophils, Th2-derived cytokines differentially activate both PI3K and MAP kinase signal transduction pathways with distinct functional consequences showing complex regulation of eosinophil effector functions.  相似文献   

10.
Treatment of cells with granulocyte colony-stimulating factor (G-CSF) leads to tyrosine phosphorylation of cellular proteins. G-CSF stimulates both the activation of protein tyrosine kinases Lyn, Jak1, and Jak2 and the association of these enzymes with the G-CSF receptor. Wild-type, lyn-deficient, and syk-deficient chicken B lymphocyte cell lines were transfected with the human G-CSF receptor, and stable transfectants were studied. G-CSF-dependent tyrosyl phosphorylation of Jak1 and Jak2 occurred in all three cell lines. Wild-type and syk-deficient transfectants responded to G-CSF in a dose-responsive fashion with increased thymidine incorporation, but none of the clones of lyn-deficient transfectants did. Ectopic expression of Lyn, but not that of c-Src, in the lyn-deficient cells restored their mitogenic responsiveness to G-CSF. Ectopic expression in wild-type cells of the kinase-inactive form of Lyn, but not of the kinase-inactive form of Jak2, inhibited thymidine incorporation in response to G-CSF. These studies show that the absence of Lyn results in the loss of mitogenic signaling in the G-CSF signaling pathway and that activation of Jak1 or Jak2 is not sufficient to cause mitogenesis.  相似文献   

11.
Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that positively or negatively regulates the proliferation of various types of cells. In this study we have examined whether or not the activation of the mitogen-activated protein (MAP) kinases is involved in the transduction of cell growth modulation signals of TGF-beta 1, as MAP kinase activity is known to be closely associated with cell cycle progression. Although TGF-beta 1 stimulated the growth of quiescent Balb 3T3 and Swiss 3T3 cells, it failed to detectably stimulate the tyrosine phosphorylation and activation of the 41- and 43-kDa MAP kinases at any time point up to the reinitiation of DNA replication. TGF-beta 1 also failed to stimulate the expression of the c-fos gene. Furthermore, TGF-beta 1 synergistically enhanced the mitogenic action of epidermal growth factor (EGF) without affecting EGF-induced MAP kinase activation in these fibroblasts, and it inhibited the EGF-stimulated proliferation of mouse keratinocytes (PAM212) without inhibiting EGF-induced MAP kinase activation. Thus, the ability of TGF-beta 1 to modulate cell proliferation is apparently not associated with the activation of MAP kinases. In this respect, TGF-beta 1 is clearly distinct from the majority, if not all, of peptide growth factors, such as platelet-derived growth factor and EGF, whose ability to modulate cell proliferation is closely associated with the activation of MAP kinases. These results also suggest that the activation of MAP kinases is not an absolute requirement for growth factor-stimulated mitogenesis.  相似文献   

12.
The immunosuppressive metabolite of leflunomide, A77 1726, inhibits the enzymatic activity of protein tyrosine kinases and of dihydro-orotic acid dehydrogenase, an enzyme involved in pyrimidine biosynthesis. Here murine CTLL cell lines were studied to determine which of the biochemical targets of A77 1726 was responsible for the observed inhibition of proliferation and cytotoxic activity. At low concentrations of A77 1726, pyrimidine biosynthesis is the target, since inhibition of proliferation correlates with a reduction in pyrimidine NTP levels and is reversed by uridine. At higher concentrations of A77 1726, uridine no longer reverses the inhibition of proliferation even though pyrimidine NTP levels are restored. This second mechanism for inhibiting proliferation is probably inhibition of protein tyrosine kinases, since these higher concentrations of A77 1726 inhibit IL-2-induced tyrosine phosphorylation of Jak1 and Jak3, the protein tyrosine kinases initiating signaling by the IL-2R. Tyrosine phosphorylation of the beta-chain of the IL-2R, which is required for IL-2-driven proliferation, is also inhibited by A77 1726. Cytotoxicity of a CTLL line that overexpresses the Lck protein tyrosine kinase is inhibited by A77 1726; this inhibition is not affected by uridine, but does correlate with inhibition of an Lck in vitro kinase reaction. These studies establish that inhibition of pyrimidine biosynthesis and that of protein tyrosine kinase both contribute to the effects of A77 1726 on CTLL cell lines.  相似文献   

13.
Activation of the multicomponent interleukin-2 receptor (IL-2R) complex leads to a rapid increase in tyrosine phosphorylation of a number of cellular proteins including the IL-2R beta and IL-2R gamma chains of the IL-2R and the RAF-1 serine threonine kinase. In addition, phosphatidylinositol 3-kinase (PI-3K) protein and activity can be immunoprecipitated with anti-phosphotyrosine and anti-IL-2R beta antibodies from IL-2-activated but not resting T lymphocytes. We have demonstrated that the SH2 (SRC homology 2) domains of the 85 kDa subunit of PI-3K are sufficient to mediate binding of the PI-3K complex to tyrosine phosphorylated, but not non-phosphorylated IL-2R beta, suggesting that tyrosine phosphorylation is an integral component of the activation of PI-3K by the IL-2R. Since none of the members of the IL-2R complex contains an intrinsic tyrosine kinase domain, IL-2-induced tyrosine phosphorylation must be the consequence of activation of intracellular tyrosine kinases. SRC family members including lck, lyn and fyn have been demonstrated to associate with IL-2R beta through binding of the kinase domain to the acidic domain of IL-2R beta. However, we have demonstrated that the serine rich (SD) region of the cytosolic domain of IL-2R beta is also required for association of a tyrosine kinase with the IL-2R complex and that IL-2 can induce proliferation and tyrosine phosphorylation in cell lines which lack the known SRC family kinases expressed by T lymphocytes. Thus members of other kinase families besides SRC may also be involved in mediating IL-2 signal transduction. Biochemical studies and studies of cells expressing mutant IL-2 receptors indicate that IL-2-induced tyrosine kinase activation initiates a complex signaling cascade. The cascade includes SRC family kinase members such as lck, fyn, and lyn, activation of Raf-1 and PI-3K, and ras, and increased expression of the fos, fra-1, and jun protooncogenes. In addition, ligation of the IL-2R leads to rapid increases in myc expression and more delayed increases in the expression of the cdc2 and cdk2 kinases and the cyclins through a tyrosine phosphorylation independent pathway. Whether other biochemical processes initiated by IL-2R ligation, including activation of the MAP2, p70S6 and p90RSK serine threonine kinases, activation of NF-kappa B, and increased expression of Raf-1, Pim-1, bcl-2, IL-2R alpha and IL-2R beta, are consequences of the IL-2-induced tyrosine kinase cascade remains to be determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Many cytokines transmit signals to the cell interior through activation of receptor-associated, Janus family protein tyrosine kinases (Jak PTKs). The interleukin-2 receptor (IL-2R) is associated with the Jak1 and Jak3 PTKs, and ligand-induced activation of these PTKs is essential for lymphocyte proliferation. Here, the nonreceptor PTK, Pyk2, was found to be activated following IL-2 stimulation in a Jak-dependent manner. Furthermore, physical association was detected between endogenous Pyk2 and Jak3, and a dominant interfering mutant of Pyk2 inhibited IL-2-induced cell proliferation without affecting Stat5 activation. Collectively, these results suggest that Pyk2 is a newly identified component of the Jak-mediated IL-2 signaling pathway.  相似文献   

16.
IL-2R signal transduction involves tyrosine phosphorylation of several proteins including Jak3 and STAT5. In the present study we examined the effect of two octylamino-undecyl-dimethylxanthine (OUDMX) derivatives, designated CT2576 and CT5589, on proliferation and protein tyrosine phosphorylation in human malignant T-cell lymphoma lines. These T-cell lines (PB-1, 2A, and 2B), obtained from a progressive T-cell lymphoma involving skin, are IL-2 independent but have constitutively activated IL-2R-associated signal transduction pathway common to IL-2 and several other cytokines: IL-4, IL-7, IL-9, and IL-15. CT2576, characterized previously on the functional level as an inhibitor of IL-2 signaling and, on the biochemical level, as an inhibitor of phosphatidic acid biosynthesis, suppressed completely growth of the malignant T cell lymphoma lines. CT5589 which is a novel analog of the CT2576, displayed a similar, although weaker, effect. Furthermore, both CT compounds inhibited constitutive tyrosine phosphorylation of two proteins: Jak3 and STAT5 which are key downstream elements in the signal transduction pathway activated by IL-2 and the other cytokines. The CT compounds inhibited also Jak3 phosphorylation induced by IL-2 in the IL-2 dependent SZ-4 cells. Inhibition of phosphorylation by CT2576 and CT5589 was only partially selective since phosphorylation of several other proteins was also affected. Phosphorylation of many others was, however, unaffected. These findings demonstrate that the OUDMX derivatives suppress proliferation of malignant T lymphocytes. Furthermore, they suggest that this suppression may be mediated by inhibition of the IL-2R-associated Jak/STAT signaling pathway. A potential role for OUDMX derivatives in therapy of human T-cell lymphoma should be further explored.  相似文献   

17.
18.
B cell Ag receptor (BCR) signaling occurs via tyrosine phosphorylation of CD79a and CD79b ITAMs, leading to recruitment and activation of Lyn and Syk tyrosine kinases and subsequent downstream events. CD45 expression is required for BCR triggering of certain of these downstream events, such as calcium mobilization and p21ras activation. However, the site in the BCR signaling cascade at which CD45 impinges is poorly defined. To address this question, we have studied CD45 function in the CD45-deficient (CD45-) and CD45-reconstituted (CD45+) J558L mu m3 plasmacytoma. In both CD45+ and CD45- cells, Ag stimulation led to CD79a and CD79b tyrosine phosphorylation as well as Syk tyrosine phosphorylation, recruitment to the receptors, and activation. In contrast to CD45+ cells, Lyn exhibited high basal tyrosine phosphorylation in the CD45- cells and was not further phosphorylated upon Ag stimulation. Mapping studies indicated that the observed constitutive phosphorylation of Lyn reflects phosphorylation of its C-terminal tyrosine, Y508, at high stoichiometry. Constitutively Y508-phosphorylated Lyn was neither recruited to the BCR nor activated upon Ag stimulation. Moreover, CD79a-ITAM phosphopeptides failed to bind Lyn from the CD45- cells. Thus, Y508 phosphorylation of Lyn occurs in the absence of cellular CD45 expression and appears to render the kinase unable to associate with the phosphorylated receptor complex via its Src homology 2 domain and to participate in signal propagation. Surprisingly, in view of previous findings implicating Src family kinases in ITAM phosphorylation, the data indicate that Ag-induced CD79a and CD79b tyrosine phosphorylation and Syk recruitment and activation can occur in the absence of CD45 expression and, hence, Src-family kinase activation.  相似文献   

19.
Igs can be potent stimulants of eosinophil activation since interaction with IgA or IgG-coated particles can lead to eosinophil degranulation. We have investigated the comparative roles of mitogen-activated protein (MAP) kinases (MAPKs; ERK1/2 and p38) and phosphatidylinositol-3 kinase (PI3K) in the priming and regulation of Fc receptor functioning on human eosinophils utilizing a MAPK kinase (MEK) inhibitor (PD98059), a p38 inhibitor SB203580, and the widely used PI3K inhibitors wortmannin and LY294002. We demonstrate that priming of human eosinophils with Th2-derived cytokines, IL-4 and IL-5, differentially activate phosphotyrosine-associated PI3K and ERK and p38 MAP kinases. This activation can be inhibited by pre-incubation with wortmannin or LY294002, PD98059, and SB203580, respectively. Analysis of the effects of the inhibitors on rosette formation between human eosinophils and IgA- or IgG-coated beads revealed that activation of MEK was not required for IgA binding after priming with IL-4 or IL-5. However, inhibition of MEK did inhibit IL-5-primed binding of IgG-beads. The rosette formation of primed eosinophils with IgA-beads could be completely inhibited by wortmannin and LY294002 treatment, demonstrating a critical role for PI3K. Interestingly, inhibition of the p38 pathway also resulted in a complete blockade of IgA rosette formation. This work demonstrates regulatory control by inside-out signaling of Fc receptors by various cytokines on human eosinophils. Thus in vivo the local production of Th2-derived cytokines will regulate the effector functions of Fc receptors.  相似文献   

20.
Aggregation of high affinity IgE Fc receptors (Fc epsilon RI) on RBL-2H3 cells results in tyrosine phosphorylation of 33-, 42-, 44-, 72-, 80-, 90-, 125-kDa proteins. The 42 and 44 kDa proteins were identified as mitogen-activated protein (MAP) kinases with immunoblotting of anti-MAP kinase antibody. The effects of an antiallergic drug, pemirolast potassium (TBX) on Ag-induced protein tyrosine phosphorylation and MAP kinase activation were investigated. When RBL-2H3 cells were stimulated with Ag in the presence of TBX, tyrosine phosphorylation of three proteins (33, 42 and 44 kDa) was inhibited concentration-dependently (0.1-10 micrograms/ml). Inhibition of Ag-induced tyrosine phosphorylation of 33 kDa protein, which could be a beta subunit of Fc epsilon RI, suggests that TBX may prevent the activation of Fc epsilon RI. TBX suppressed activation of MAP kinases (42 and 44 kDa) in response to Ag as well as phorbol myristate acetate (100 nM) or calcium ionophore A23187 (500 nM), implying that the drug acts on signal transduction component(s) between the second messengers and MAP kinases. However, TBX had no effects on protein tyrosine phosphorylation and MAP kinase activation in MC3T3-E1 osteoblastic cells. These results indicate that TBX may affect Fc epsilon RI and also may act as a step distal of Ca2+ mobilization and protein kinase C activation leading to MAP kinase activation in RBL-2H3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号