首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compression tests at room and high temperature and creep tests at high temperature have been performed on B2 Nb15A120V and Nb10A120V alloys. At room temperature, in the as-cast state, both alloys exhibited significant ductility in compression. The Burgers vectors of the dislocations were found to be 1/2(111) slipping on {112}. The dislocations showed good mobility. Dislocation clusters also triggered the formation of pseudotwins, which resulted in serrated yielding. In steady state creep, deformation occurred by a combination of dislocation glide and climb, giving a homogeneous microstructure. The dislocations in Nb10A120V were determined to be 1/2(111) slippingon {110} with some (100) segments. After creep at 1100℃, Nb15A120V showed a two phase structure with a few dislocations in the A15 phase but no dislocations in the A2 phase.  相似文献   

2.
《Intermetallics》2002,10(1):13-21
The mechanical behaviour of three Nb–Al–V alloys with nominal compositions Nb–10Al–20V, Nb–15Al–20V and Nb–25Al–40V (in at.%) have been investigated. Both conventional constant strain rate deformation and compressive creep tests have been performed and the deformation microstructures have been examined by transmission electron microscopy (TEM). At room temperature all three alloys deform by planar slip, with dislocation/particle interactions giving significant strengthening for the two phase alloys. Deformation at higher temperatures occurs by a combination of dislocation glide and climb processes, giving more homogeneous microstructures. All of the dislocations in the B2 phase of these alloys are uncoupled superpartial dislocations with b=1/2<111>. The influence of dislocation/domain boundary interactions on the formation of slip bands and uncoupled superpartials is discussed.  相似文献   

3.
The phase stability, mechanical properties and deformation mechanisms of a range of Nb/10–25at.% Al/20–40at.% V alloys have been determined over a wide temperature range. These alloys contain a previously unreported stable B2 phase and the volume fraction is directly proportional to the Al/V ratio for these compositions. The B2 phase is inherently ductile even at room temperature and deforms by a combination of martensitic pseudo-twinning and planar slip of paired superpartial dislocations withb =1/2 111 on 110 and 112 . The effect of alloy composition on the phase stability and deformation mechanisms is discussed.  相似文献   

4.
《Intermetallics》2002,10(1):1-12
The microstructures of three Nb–Al–V alloys with nominal compositions Nb–10Al–20V, Nb–15Al–20V and Nb–25Al–40V (in at.%) have been investigated. It is shown that the alloys each exhibit an A2 or B2 matrix and often contain A15 and/or σ phase precipitates depending on thermal history. Both the A15 and σ phase precipitates exhibit two different well-defined orientation relationships and for the former these correspond to minimisation of elastic strain energy. ALCHEMI data from the B2 phase indicate that this is more stable for higher Al concentrations, and this is consistent with measurements of A2/B2 order-disorder transformation temperatures. In the alloy Nb–15Al–20V, the precipitation of the A15 phase in a supersaturated B2 matrix is preceded by the separation of the B2 phase into Al-rich domains in an Al-lean matrix.  相似文献   

5.
IntroductionIMI829titaniumaloyisakindofhightemperaturenearαaloy.Itsservicetemperatureisupto580℃.IthasbeenusedinRB211525E4en...  相似文献   

6.
《Intermetallics》2000,8(8):915-928
The orthorhombic phase based on Ti2AlNb intermetallic is an important constituent of several alloys currently under investigation as both monolithic products and as matrix material for intermetallic–matrix composites. The creep behaviour of Ti2AlNb intermetallic phase has been studied over a strain rate range of 10−7–10−9/s and a temperature range 973–1023 K. A well defined steady state with a normal transient is observed after stress jump tests. The stress exponent decreases gradually from 7 to 5 with increasing temperature, suggesting that the activation energy for creep may have a mild stress dependence. The activation energies are similar to those for diffusion in Ti3Al binary intermetallic. The dislocation structure consists of ‘a’, ‘a*’ and pure ‘c’ dislocations which are arranged in a three-dimensional network. Based on these observations, it is hypothesised that a network model of creep, as proposed for example by McLean, may be appropriate to describe the creep of this intermetallic. The rate-controlling mechanism is believed to be the climb of super-dislocations. The effect of Nb content on the creep of this intermetallic has also been studied. It is found that Nb content does not affect the creep behaviour of the O phase.  相似文献   

7.
Microstructures and mechanical properties of Nb-32Ti-7Al alloys containing different V and Zr contents were investigated. The microstructures were characterized using optical microscopy and scanning electron microscopy (SEM). The alloy with V and Zr presents single phase Nb solid solution (Nbss). Tensile testing was carried out at room temperature and 1373 K. The results show that these alloys have good ductility at room temperature. The strengths at room and high temperature increase with the addition of V...  相似文献   

8.
通过合金设计的方法分别制备了具有单相(γ-TiAl)组织的合金A、二相(γ-TiAl+α2-Ti3Al)层片组织的合金B和三相(γ-TiAl+α2-Ti3Al+Nb2Al)混合组织的合金C3种Ti-Al-Nb三元合金,通过XRD、EPMA以及SEM等手段确定了这3种合金的组织结构和分布形态,并对这3种合金进行了室温和1173K的拉伸试验。结果表明,合金的显微组织与其性能密切相关,室温下合金B的塑性变形能力好于另外两种合金,这主要是因为α2相的存在降低了合金平均晶粒尺寸,由γ和α2两相构成的层片组织结构以及大量的γ/α2相界面。温度升高可以显著改善合金B的塑性变形能力,合金B在1173K时的拉伸延性达到40.4%,并且断裂方式从室温时的穿晶脆性断裂向1173K时的韧性断裂方式转变,而合金A、C不管在室温还是1173K,都显示出穿晶脆性断裂方式。合金C在室温和高温都很脆,是由于Nb2Al相的出现,降低了(γ+α2)两相层片组织的连续程度。  相似文献   

9.
钛的电阻钎焊技术研究   总被引:2,自引:0,他引:2  
研究了Ti-24Al-11Nb-2Si和Ti-24Al-11Nb-5Si金属间化合物合金的热轧组织与性能,结果发现:随着变形量的增加,两种合金第二相Ti5Si3变得细小且趋向于均匀分布。变形量越大,合金的室温四点弯曲程度越大,含Ti5Si3较多的Ti-24Al-11Nb-5Si合金的弯曲强度较高。两种合金的室温弯曲断口形貌均为准解理形式,两相界面结合较强。高温拉伸试验表明:随变形量的增大,Ti-24Al-11Nb-2Si合金的拉伸强度和塑性都增加。Ti-24Al-11Nb-5Si合金由于变形量较大和较高的强化相体积含量,拉伸强度明显较Ti-24Al-11Nb-2Si合金的为高,但塑性却大为降低  相似文献   

10.
The current understanding of the metallurgy of the orthorhombic alloys in the Ti---Al---Nb system is reviewed with emphasis on tensile and creep properties of ternary alloys. It is shown that increasing the Nb content of alloys from 15 to 27 at% at a constant Al level significantly increases both the tensile and creep properties of equiaxed as well as lath structures, while small changes in Al content have a large effect on creep. For a given alloy composition, the amount of B2(β) phase and its distribution and the scale of O laths influences tensile properties, while creep properties depend on the volume fraction of equiaxed 2/O phase present in the structure as well as the size of O laths.  相似文献   

11.
The effects of Ca and Sr addition on the microstructure and creep properties of Mg-4Al-2Sn alloys were examined.Tensile tests at 25℃ and 200℃ and creep tests at 150℃ and 200℃ were carried out to estimate the room temperature and high temperature mechanical properties of these alloys.The microstructure of the Mg-4Al-2Sn alloy showed dendriticα-Mg,Mg17Al12 and Mg2Sn phases.The latter two phases precipitated along the grain boundaries.The addition of Ca and Sr resulted in the formation of ternary CaMgSn and SrMgSn phases within the grain.The grain size was reduced slightly with the addition of Sr and Ca.The tensile strength was decreased by the addition of Ca and Sr at room temperature.However,the high temperature tensile strength was increased.The creep strength was improved by the addition of Ca and Sr.  相似文献   

12.
The effect of alloying elements V and Al on microstructure and room temperature fracture toughness of an experimental Nb-Si in-situ composite was investigated. The Nb-Si alloys with different amount of V and Al were prepared by non-consumable arc-melting furnace. The experimental results showed that with the addition of V and Al, the microstructure of the Nb-Si materials transformed from Nbss+Nb3Si to Nbss+Nb5Si3 and the lattice parameters of Nbss phase decreased, and the alloying element V promoted the for...  相似文献   

13.
NiTi-Al-based alloys are promising high-tem- perature structural materials for aerospace and astronautics applications. A new NiTi-Al-based alloy Ni--43Ti-4AI- 2Nb-2Hf (at%) was processed via isothermal forging. The microstructure and mechanical properties at room temperature and high temperature were investigated through scanning electron microscope (SEM), X-ray diffraction (XRD), and tensile tests. Results show that the micro- structure of as-forged Ni-43Ti--4AI-2Nb-2Hf alloy con- sists of NiTi matrix, Ti2Ni phase, and Hf-rich phase. The simultaneous addition of Nb and Hf, which have strong affinities for Ti sites, promotes the precipitation of Hf-rich phases along the grain boundaries. The tensile strengths of Ni-43Ti-4A1-2Nb-2Hf alloy are dramatically increased compared with the ternary Ni-46Ti-4A1 alloy. At room temperature and 650℃, the yield stress of Ni--43Ti-4Al- 2Nb-2Hf alloy reaches 1,070 and 610 MPa, respectively, which are 30 % and 150 % higher than those of Ni--46Ti- 4Al alloy. The improved tensile property results from the solid solution strengthening by Nb and Hf, as well as the dispersion hardening of the Ti2Ni and Hf-rich phases.  相似文献   

14.
M. Palm  G. Sauthoff 《Intermetallics》2004,12(12):1345-1359
Single-phase Fe–Al–Ti alloys with the Heusler-type L21 structure and two-phase L21 Fe–Al–Ti alloys with MgZn2-type Laves phase or Mn23Th6-type τ2 phase precipitates were studied with respect to hardness at room temperature, compressive 0.2% yield stress at 20–1100 °C, brittle-to-ductile transition temperature (BDTT), creep resistance at 800 and 1000 °C and oxidation resistance at 20–1000 °C. At high temperatures the L21 Fe–Al–Ti alloys show considerable strength and creep resistance which are superior to other iron aluminide alloys. Alloys with not too high Ti and Al contents exhibit a yield stress anomaly with a maximum at temperatures as high as 750 °C. BDTT ranges between 675 and 900 °C. Oxidation at 900 °C is controlled by parabolic scale growth.  相似文献   

15.
Nb/Nb5Si3 in-situ composites are very attractive structural materials because these materials perform a good balance in mechanical properties, including high strength at high temperature (>1000℃) and reasonably high fracture toughness at room temperature. Metastable phase Nb3Si plays an important role in the properties of  相似文献   

16.
氢对Ti3Al—Nb合金组织和高温变形的影响   总被引:1,自引:1,他引:0  
研究了氢对一种Ti3Al基合金(Ti-24Al-14Nb-3V-0.5Mo.at%)组织和高温变形的影响。结果表明,渗氢使所研究合金的O相中氢化物,这些氧化物在高温下分解,留下一些位错误,渗氮还使O相的体积发散下降,在高温变形中,氢的存在可促进O相的动态再结晶和B2相中的位错运动,并能降低变形过程激活能,同时,对氢降低合金高温变形的流变应国的机制进行了分析。  相似文献   

17.
对Fe-49Co-2V和Fe-49Co-2V-0.3Nb两种合金室温与高温时的磁性能和力学性能进行了测试。结果发现:与室温磁性能相比,两种合金在高温下的饱和磁化强度Bs与矫顽力Hc均降低;与室温力学性能相比,两种合金在500 ℃时的高温抗拉强度都有所增加,其中 Nb元素的添加使合金力学性能强化的效果十分明显。两种合金经500 ℃时效处理168 h后,Fe-49Co-2V-0.3Nb合金经过高温时效后依然能保证具有良好的力学性能,添加了Nb元素后有助于改善合金的高温时效稳定性。  相似文献   

18.
Iron aluminides are known for their resistance to high temperature oxidation and sulphidation. Only little information is available about carburisation and metal dusting of Fe‐Al alloys. Metal dusting experiments with Fe‐15Al and Fe‐15Al‐2M‐1C alloys (in at.%) with M = Ti, V, Nb, or Ta were conducted at 650°C in CO‐H2‐H2O gas mixtures with the carbon activity ac = 28. The kinetics of the carbon transfer was measured using thermogravimetric analysis (TGA). It is shown that the mass gain kinetics decreases by adding the alloying elements Nb, Ta, V, or Ti with C. Alloying with titanium and carbon leads to the most significant decreasing effect. The metallographic cross section observation showed a general metal wastage for Fe‐15Al, but local pitting for the Fe‐15Al‐2Nb‐1C and Fe‐15Al‐2Ta‐1C alloys. For the Fe‐15Al‐2V‐1C and Fe‐15Al‐2Ti‐1C alloys no significant attack was observed. Needle‐ or plate‐like Fe3AlCx precipitates were detected in the carburised samples. The existence of this ternary carbide with perovskite structure was predicted by thermodynamic calculations using the software Thermo‐Calc. The morphology of graphite on the surface was analysed by scanning electron microscopy (SEM). Mainly fine filaments with iron containing particles were detected. Cementite was detected in the coke layer by X‐ray diffraction analysis (XRD).  相似文献   

19.
《Intermetallics》2000,8(5-6):699-702
Rolling processing and microstructure evolution during rolling and heat treatment for two typical α2+B2+O alloys, Ti–24Al–14Nb–3V and Ti–23Al–17Nb (at%), were investigated. The experimental results showed that the alloys have good workability for rolling at temperatures both in the α2+B2 and in α2+B2+O fields. The thickness reduction up to 99% was obtained for the sheets rolled above 900°C in a quasi-isothermal condition without cracking. A typical duplex microstructure of the α2+B2+O phases formed when the sheets were rolled and then solution treated at temperatures in the α2+B2 phase field plus aging in the O+B2 field. Such duplex microstructure was proved to have good mechanical properties both in room and elevated temperatures. A microstructure of fine equiaxed α2 and O phases distributed in B2 matrix was obtained for the sheets rolled and then solution treated at the temperatures in the α2+B2+O phase field, which possess excellent room temperature ductility and superplasticity in temperatures of 900∼1000°C. An advanced cold rolling processing plus a proper vacuum heat-treatment used for the production of high-quality foils of Ti–24Al–14Nb–3V (at%) alloy are also reported.  相似文献   

20.
《Intermetallics》2000,8(4):427-437
Hot hardness and creep studies were carried out on Fe3Al and Fe3Al containing Cr or Ti. Indentation and impression creep testing methods were employed to characterize the creep behaviour. Compared to the binary alloy, Fe3Al–Cr exhibits a lower hardness indicating solid-solution softening effect of Cr. On the other hand, solid-solution hardening effect of Ti is significant in the temperature range 300–900 K. Results from indentation creep indicates that a power-law creep behaviour (n between 6 and 8) is observed in the binary and Cr containing alloys at temperatures greater than 753 K. At lower temperatures in the above two alloys and in the Ti-containing alloy even at higher temperatures, there is a power-law break down. On the other hand at low stress levels covered in the impression creep studies, power-law creep is observed in all the alloys in the stress and temperature range of investigation. Under these conditions, all the alloys exhibit a stress exponent value of around 3 for the steady state creep rate. The activation energy for creep is estimated to be in the range 325 and 375 kJ mol. Among the alloys studied, Fe3Al–Ti exhibits the best creep resistance. The results indicate that in the B2 region, viscous glide controls the creep rate at low stresses while climb of dislocations may be rate controlling at higher stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号