首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分别采用浸泡腐蚀实验、电化学测试技术、扫描电化学显微镜(SECM)分析技术和慢应变速率拉伸(SSRT)及应力腐蚀(SCC)实验方法对比研究了316L和HR-2奥氏体不锈钢在三氯化铁溶液中的腐蚀行为,并探讨了腐蚀机理。结果表明,不受力条件下316L和HR-2不锈钢的耐腐蚀性能均较好,316L钢呈现出较轻的点腐蚀现象。在动态拉应力作用下,316L和HR-2不锈钢均表现出较高的应力腐蚀开裂敏感性,原因是拉应力促进了不锈钢表面钝化膜的破裂,加速应力腐蚀裂纹的萌生和扩展。316L不锈钢的SCC敏感性稍高于HR-2不锈钢,归因于316L不锈钢点蚀敏感性稍高,因而表面钝化膜在动态拉伸载荷作用下更易于破裂。  相似文献   

2.
利用一种新型的露点腐蚀模拟装置结合原位的电化学阻抗谱,电化学噪声等测试手段评价了304和316L两种不锈钢的盐酸露点腐蚀行为.结果表明,316L不锈钢表现出更优异的耐盐酸露点腐蚀性能,主要原因可归结为两点:一是316L不锈钢钝化膜中含有较高的Cr/(Cr+Fe) 比以及较低含量的Fe;二是316L不锈钢钝化膜中含有能改善抗点蚀性能的Mo.  相似文献   

3.
用质量损失法系统研究Ni-Cu-P及316L不锈钢在含盐酸高温流体中的冲蚀行为。结果表明:Ni-Cu-P和316L在单向流(20%HCl溶液)和两相流(20%HCl溶液+20g/L黄砂)中的冲蚀速率均随流体温度的升高而增大;在353K单相流和两相流中,316L冲蚀速率均为Ni-Cu-P的10倍左右。盐酸浓度对Ni-Cu-P和316L冲蚀速率的影响较温度小。Ni-Cu-P在单向流和两相流中冲蚀机制分别为均匀腐蚀和均匀腐蚀+微切削。316L不锈钢在298K单相流和两相流中冲蚀机制分别为轻微选择性腐蚀和轻微选择性腐蚀+微切削,表面为富Cr钝化膜;而在323~353K,其冲蚀机制分别为选择性腐蚀和选择性腐蚀+微切削,表面为富Mo和Ni的钝化膜。  相似文献   

4.
316L不锈钢是一种耐蚀性和加工性优异的奥氏体不锈钢。在海洋环境使用过程中发现经钝化处理的316L不锈钢波纹管在短时间内出现穿孔,而经表面黑化处理的波纹管出现缓慢的均匀腐蚀,没有出现点蚀穿孔现象。为了弄清波纹管穿孔的原因及机理,采用扫描电镜、数码显微镜及金相显微镜分别对黑化处理及钝化处理的不锈钢腐蚀形貌及金相组织结构进行观察。利用X射线衍射仪(XRD)和化学成分分析技术分别对腐蚀产物的相结构及不锈钢材料的成分进行分析。结果表明,酸洗后钝化膜的破裂和海水中氯离子的残留是形成点蚀穿孔的主要原因;表面黑化之后的波纹管由于表面形成了疏松的物质,在海水中为均匀腐蚀,其腐蚀的速度远低于点蚀速度。  相似文献   

5.
在外加恒电位下,通过测腐蚀电流密度-温度曲线的方法研究了Cl~-含量对316L不锈钢临界点蚀温度(CPT)的影响。结果表明:在临界点蚀温度以下,试样表面钝化膜比较稳定,超过该温度后,试样表面开始发生点蚀。Cl~-含量越高,316L不锈钢临界点蚀温度越低,且表面的点蚀坑越多。现场的腐蚀产物分析表明,腐蚀产物表面稀疏,主要元素为O、Fe、C、Cl。现场生产水Cl~-质量浓度高达21.431g/L,对316L不锈钢的腐蚀极其严重。  相似文献   

6.
在温度分别为20,40和70℃的2倍浓缩海水模拟溶液中,利用循环伏安曲线测试和SEM观察研究,对316不锈钢和超级不锈钢904L、254sMo以及2507的极化行为和表面点蚀形貌进行了研究。结果表明,在该环境中,升高温度可降低316、904L、254sMo和2507等4种不锈钢表面钝化膜的稳定性并提高其点蚀敏感性。在不同温度中,316不锈钢表面均发生严重点蚀损伤,而254sMo和2507不锈钢表面均无明显点蚀迹象。在低温时,904L不锈钢钝化膜击穿电位较高,点蚀坑尺寸较小,点蚀倾向较低;在高温时,其点蚀电位显著降低,点蚀坑尺寸明显增大,点蚀倾向较大。  相似文献   

7.
通过对电化学噪声数据进行时域、频域和Weibull分布等分析,比较了高氮奥氏体不锈钢(HNSS)和316L不锈钢(316L SS)在6%(质量分数)FeCl_3溶液中的点蚀行为。时域分析结果表明,316L SS在溶液中浸泡5 h后,电位噪声和电流噪声均出现了噪声暂态峰,试样表面发生了亚稳态点蚀,而此时HNSS并没有出现明显的噪声暂态峰,电位噪声和电流噪声仅发生小幅高频波动,表面钝化膜虽发生轻微腐蚀,但仍具有一定的再钝化能力。316L SS的噪声电阻波动幅值较大,而HNSS噪声电阻幅值在小范围内波动,表面钝化膜的自钝化和修复能力优于316L SS。功率谱密度图像表明,316L SS的高频段斜率和白噪声水平强度均高于HNSS,且Weibull分布分析表明316L SS的点蚀孕育速率约是HNSS的2倍,316L SS更容易发生点蚀,HNSS的抗点蚀能力更强。  相似文献   

8.
通过腐蚀模拟试验和电化学测试,研究了H2S分压对316L不锈钢在含Cl-条件下的点蚀行为。模拟试验结果表明,随H2S分压的升高,316L不锈钢试样表面钝化膜局部出现破损,点蚀电位及钝化膜电阻均明显下降,点蚀敏感性提高。H2S分压增至100kPa时,样品表面可以观察到明显点蚀形核,与无H2S条件相比,膜电阻显著减小,难以维持良好的钝化状态。  相似文献   

9.
材质为316L不锈钢的半成品柴油输送管道在水平段底部出现快速腐蚀,9个月出现5次泄露。通过宏观分析、化学成分检测、力学性能测试、金相分析、腐蚀产物物相分析、腐蚀介质有害相分析、腐蚀产物分析等方法,对管道失效原因进行分析。结果表明:不锈钢管线腐蚀属于氧腐蚀及点蚀;氧化铁等腐蚀产物或杂质随介质在管线底部流动,对管线底部形成线状冲刷磨损,破坏了钝化膜的保护作用,造成管线底部率先腐蚀;腐蚀环境中Cl-极易破坏不锈钢表面的钝化膜,形成坑蚀,成为孔蚀延伸的活性中心。  相似文献   

10.
利用电化学方法测量316L不锈钢在不同浓度磷酸溶液中的极化曲线、电化学阻抗、恒电位极化曲线和M-S 曲线,利用 XPS 技术对钝化膜的成分进行表征。结果表明,316L 不锈钢在空气中和磷酸溶液中形成的钝化膜均具有双层结构,内层主要含Cr2O3,在空气中形成的钝化膜外层为Fe的氧化物和氢氧化物,在磷酸溶液中形成的钝化膜外层则为Fe的氧化物和磷酸盐。当磷酸浓度小于1 mol/L时,316L不锈钢表面钝化膜受到的破坏较小,其依旧维持较好的耐腐蚀性,随着腐蚀时间的延长,钝化膜会由致密变疏松;当磷酸浓度大于1 mol/L时,表面钝化膜受到的破坏较为严重,耐腐蚀性明显降低,钝化膜变薄且疏松,但是难溶腐蚀产物的生成相对减缓了钝化膜被破坏的进程。  相似文献   

11.
分别研究了酸洗时间对316L不锈钢表面形貌、表面光学常数及其在3.5%NaCl溶液中耐蚀性能的影响.结果表明,适当酸洗可提升316L不锈钢耐腐蚀性能,但是过度酸洗则容易出现点蚀,耐腐蚀性能的提高是因为酸洗后316L不锈钢表面形成了富含Cr2O3的钝化膜,点蚀的出现是因为其表面出现的微孔促进了点蚀的形核.酸洗液残留于表面...  相似文献   

12.
温度对316L不锈钢耐海水腐蚀性能的影响   总被引:1,自引:0,他引:1  
运用临界点蚀温度(CPT)、环状阳极极化曲线和电化学阻抗谱等方法研究了不同温度下316L不锈钢的海水腐蚀行为. 结果表明, 晶粒尺寸不同的两种316L不锈钢的CPT基本相同; 随着海水温度升高, 点蚀电位和再钝化电位均呈线性降低, 但是细晶钢的点蚀性能下降更大, 85℃时粗晶钢比细晶钢的点蚀电位约高60 mV. 与粗晶钢相比, 细晶钢在65℃下形成的钝化膜微缺陷更多, 且点蚀诱导时间较短.  相似文献   

13.
采用微生物分析、电化学测试、扫描电镜观察及表面能谱分析等方法,研究了316L不锈钢在硫酸盐还原菌(Sulfate—Reducing Bacteria,SRB)与铁氧化菌(Iron—Oxidizing Bacteria,IOB)共同作用的溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统中微生物腐蚀的特征及机制。结果表明,不锈钢电极在SRB与IOB相结合的溶液中的自腐蚀电位、点蚀电位和再钝化电位均随浸泡时间的增加而负移,其滞后环增大;在SRB与IOB共同作用的溶液中的腐蚀速率大于在无菌溶液中;显微观察表明生物膜疏松多孔,生物膜内细菌的生长代谢活动促使不锈钢表面的钝化膜层腐蚀破坏程度增加,在SRB与IOB共同作用下316L不锈钢电极发生了严重的点蚀。  相似文献   

14.
采用动电位极化扫描、电化学阻抗谱等方法研究在地下咸水不同电导率、p H值和流速条件下,B30铜镍合金和316L不锈钢的腐蚀行为。结果表明:随着地下咸水电导率的增加,B30铜镍合金自腐蚀电流密度迅速增加,点蚀敏感性增大,而316L不锈钢自腐蚀电流密度的增加较缓慢,耐蚀性明显优于B30铜镍合金。在酸性溶液中,B30铜镍合金发生均匀腐蚀。随着p H值的增大,B30铜镍合金点蚀倾向增大,316L不锈钢点蚀倾向减小。流速为1 m/s的冲刷腐蚀条件可以破坏B30铜镍合金钝化膜的形成,而不影响316L不锈钢钝化膜的稳定性。这为热泵系统如何选择金属材料提供了参考。  相似文献   

15.
通过动电位极化和电化学阻抗方法考察了2205双相不锈钢和316L不锈钢在5%(体积分数)HF溶液中的电化学行为,借助Mott-Schokkty曲线分析了两种不锈钢表面钝化膜的半导体特性。结果表明:两种不锈钢在氢氟酸溶液中都能发生钝化,且2205双相不锈钢的钝化区间范围更宽,维钝电流密度更低。2205双相不锈钢表面钝化膜表现出更高的钝化膜电阻和电荷转移电阻,其抗氢氟酸腐蚀性能优于316L不锈钢,这主要与2205双相不锈钢中的Mo和Cr含量高、表面钝化膜缺陷少、钝化膜易修复等因素有关。  相似文献   

16.
2205和316L不锈钢在氢氟酸中的电化学腐蚀行为   总被引:1,自引:0,他引:1  
通过动电位极化和电化学阻抗方法考察了2205双相不锈钢和316L不锈钢在5%(体积分数)HF溶液中的电化学行为,借助Mott-Schokkty曲线分析了两种不锈钢表面钝化膜的半导体特性。结果表明:两种不锈钢在氢氟酸溶液中都能发生钝化,且2205双相不锈钢的钝化区间范围更宽,维钝电流密度更低。2205双相不锈钢表面钝化膜表现出更高的钝化膜电阻和电荷转移电阻,其抗氢氟酸腐蚀性能优于316L不锈钢,这主要与2205双相不锈钢中的Mo和Cr含量高、表面钝化膜缺陷少、钝化膜易修复等因素有关。  相似文献   

17.
采用浸泡、动电位极化等方法研究了316L与2205不锈钢在5%H2SO4溶液中的化学与电化学腐蚀行为,探索两种材料在的稀硫酸溶液中的腐蚀敏感性和耐蚀性。结果表明:在化学腐蚀过程中,316L不锈钢表面出现一些点蚀坑,而2205不锈钢的表面平整光滑,无腐蚀现象发生,2205不锈钢的腐蚀速率约为316L不锈钢的1/10;在电化学腐蚀过程中,316L不锈钢的腐蚀速度与腐蚀倾向大于2205不锈钢。在相同条件下,2205双相不锈钢表现出更好的耐蚀性。  相似文献   

18.
采用腐蚀浸泡失重方法结合动电位极化曲线和电化学阻抗谱,研究了不同温度下2205双相不锈钢在不同浓度H2SO4溶液中的耐蚀性,并与传统的20R钢和316L不锈钢作对比。结果表明,三种材质的耐蚀能力由强到弱排序为:2205316L20R;硫酸浓度和温度对腐蚀速率的影响由强到弱排序都为:20R316L2205。在T≤40℃,2205双相不锈钢的腐蚀深度为0mm/a,耐蚀性等级为1级,评定为完全耐蚀;当温度增加至60℃且硫酸浓度为30%时,其腐蚀速率显著增加,腐蚀深度为27.026mm/a,耐蚀性等级为10级,评定为不耐蚀。高铬含量可以降低不锈钢材料的钝化电位,另一方面可以增强不锈钢表面钝化膜的修复能力,可能是2205双相不锈钢比316L和20R更耐蚀的本质原因。  相似文献   

19.
采用多种电化学实验手段及场发射扫描电子显微镜(FESEM)、激光共聚焦扫描显微镜(CLSM)等分析技术,结合活死细菌染色实验、点蚀坑深度分析等方法,以316L不锈钢为对比,研究了CrCoNi中熵合金在含铜绿假单胞菌培养基中的微生物腐蚀行为。结果表明:铜绿假单胞菌能够在CrCoNi中熵合金表面形成不均匀的生物被膜,从而降低开路电位,减小极化电阻和电荷转移电阻,增大腐蚀电流密度;铜绿假单胞菌生物被膜在一定程度上破坏了钝化膜,导致浸泡在含铜绿假单胞菌培养基中的CrCoNi中熵合金的最大点蚀坑深度(4.8μm)大于无菌培养基中CrCoNi中熵合金的最大点蚀坑深度(2.3μm)。与316L不锈钢相比,CrCoNi中熵合金的开路电位较高,腐蚀电流密度和腐蚀速率较小,钝化膜的修复能力较强,在含铜绿假单胞菌培养基中浸泡后的最大点蚀坑深度小于316L不锈钢(5.8μm)。  相似文献   

20.
不锈钢在含SO2-4稀HCl中的电化学腐蚀行为   总被引:3,自引:2,他引:3  
应用电化学测量技术研究了1Cr18Ni9Ti和316L在含硫 酸盐(SO2-4)的稀HCl介质中的腐蚀行为。极化曲线测量结果表明,SO2-4 能显著抑制1Cr18Ni9Ti的点蚀,而对316L的腐蚀有加速作用并降低其钝化性能。电化学阻抗 谱测量结果表明,不锈钢表面钝化膜的保护性随着温度升高而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号