首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study on recrystallization of deformed metal is important for practical industrial applications. Most of studies about recrystallization behavior focused on the migration of the high‐angle grain boundaries, resulting in lack of information of the kinetics of the low angle grain boundary migration. In this study, we focused on the migration of the low angle grain boundaries during recrystallization process. Pure nickel deformed by shot peening which induced plastic deformation at the surface was investigated. The surface of the specimen was prepared by mechanical polishing using diamond slurry and colloidal silica down to 0.02 μm. Sequential heat treatment under a moderate annealing temperature facilitates to observe the migration of low angle grain boundaries. The threshold energy for low angle boundary migration during recrystallization as a function of misorientation angle was evaluated using scanning electron microscopy techniques. A combination of electron channeling contrast imaging and electron backscatter diffraction was used to measure the average dislocation density and a quantitative estimation of the stored energy near the boundary. It was observed that the migration of the low angle grain boundaries during recrystallization was strongly affected by both the stored energy of the deformed matrix and the misorientation angle of the boundary. Through the combination of electron channeling contrast imaging and electron backscatter diffraction, the threshold stored energy for the migration of the low angle grain boundaries was estimated as a function of the boundary misorientation.  相似文献   

2.
A comparative study of atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging of the healthy human liver parenchyma was carried out to determine the similarities and the differences. In this study, we compared the fine hepatic structures as observed by SEM and AFM. Although AFM revealed such typical hepatic structures as bile canaliculi and hepatocytes, it also showed the location of the nucleus and chromatin granules in rough relief structure, which was not visible by SEM. By contrast, SEM visualized other structures, such as microvilli, the central vein, and collagenous fibers, none of which was visualized by AFM. For better orientation and confirmation of most of the structures imaged by SEM and AFM, Congo Red-stained specimens were also examined. Amyloid deposits in the Disse's spaces were shown especially clearly in these images. The differences between the SEM and AFM images reflected the characteristics of the detection systems and methods used for sample preparation. Our results reveal that more detailed information on hepatic morphology is obtained by exploiting the advantages of both SEM and AFM.  相似文献   

3.
BT25钛合金动态再结晶行为的元胞自动机模拟   总被引:1,自引:1,他引:0  
为研究热加工工艺参数对钛合金塑性成形过程中微观组织的影响,利用Gleeble-3500型热模拟试验机对BT25钛合金进行单道次等温恒应变压缩试验。分析真应力-应变曲线,建立JMAK动态再结晶动力学方程;通过对热变形行为的分析,推导出钛合金的位错密度模型、再结晶形核和晶粒长大模型;结合元胞自动机的算法,建立元胞自动机(Cellular automata, CA)模型并利用该模型模拟和验证了BT25钛合金热变形过程中动态再结晶行为。结果表明,BT25钛合金的流动应力对应变速率和变形温度非常敏感;提高变形温度或降低应变速率均有利于材料发生动态再结晶;CA模型模拟晶粒尺寸误差约为3%,预测DRX体积分数误差在10%以内。该模型具有良好的预测精度,为合金材料在塑性加工过程中优化工艺参数和控制锻件微观组织演变提供了可靠性依据。  相似文献   

4.
In situ electron backscatter diffraction microstructural analysis of recrystallizing interstitial free steels deformed to strains of 0.75 and 1.6 has been carried out in a FEG‐SEM. The experimental procedures are discussed, and it is shown that there is no degradation of the electron backscatter diffraction patterns at temperatures up to 800°C. Analysis of the surface and interior microstructures of annealed samples shows only minor difference, which suggests that in situ annealing experiments are of value. In addition, it is shown that in situ measurements allow a detailed comparison between the same areas before and after annealing, thereby providing information about the recrystallization mechanisms. Sequential recrystallization phenomena, such as initiation and growth of new grains, are observed at temperatures over 740°C, and depending on the deformation histories, different recrystallization behaviour is observed. It is found that {111}〈123〉 recrystallized grains are preferentially formed in the highly deformed material, whereas no strong recrystallization texture is formed in the lower strained material.  相似文献   

5.

The article presents results of the investigation of the quantitative evaluation of the degree of damage, described by the measure of accumulated plastic strain obtained in a static tensile test, using selected non-destructive techniques. Inconel 718 alloy was tested. The tests were conducted using a new type of specimens of variable cross-sectional area of measuring part. This provided a continuous distribution of plastic strain in the gage part of the specimen. The permanent deformation that varies along the sample axis enables an analysis of damage induced by a plastic deformation. The proposed method enables replacing the series of specimens by one sample. Degradation of the alloy corresponds with the changes of the electromagnetic properties of the material—the phase angle of the complex impedance of the eddy current, as well as with acoustics properties of material—acoustic birefringence of ultrasonic waves. It allows to determine the degree of damage of the material using noninvasive, non-destructive methods. Using the damage parameter proposed by Johnson it is possible to obtain the correlation between the non-destructive results and a damage degree of the material. The presented testing method delivers information about changes in the material structure caused by permanent deformation.

  相似文献   

6.
形变热处理工艺对低碳微合金管线钢晶粒细化的影响   总被引:3,自引:2,他引:3  
以管线钢X52为研究对象,在Gleeble1500热模拟机上,进行了奥氏体未再结晶区不同形变速度、形变量和冷却速度对X52的相变行为及显微组织影响的研究。通过光学显微镜、扫描电镜分析可以发现,随变形速率、形变量和冷却速度的增加,晶粒明显变细。同时,低碳钢不同的是在奥氏体未再结晶区扎制时,第二相的析出可以抑制再结晶,并且析出物的存在不仅阻碍位错的运动,而且全造成位错的增殖,因而微合金钢细化昌粒的机理主要有:形变诱导铁素体、铁素体的动态再结晶和第二相的析出抑制晶粒长大使晶粒细化。  相似文献   

7.
为揭示40Cr在高速冷滚打中的成形机理,将40Cr宏观应力变化和位错密度变化机理相结合,得到了40Cr位错密度变化曲线;基于位错密度变化的微观组织演变模型,建立了40Cr位错密度变化模型,并验证了该模型的正确性;利用XRD实验得到40Cr在不同变形条件下的XRD图谱,结合Dunn公式求得40Cr在不同变形条件下各个晶面及晶面整体位错密度变化。通过模型验证和试验分析,进一步从微观角度解释了40Cr在冷滚打成形过程中的变化规律。   相似文献   

8.
Detailed studies of biological phenomena often involve multiple microscopy and imaging modes and media. For bone biology, various forms of light and electron microscopy are used to study the microscopic structure of bone. Integrating information from the different sources is necessary to understand how different aspects of the bone structure interact. To accomplish this, methods were developed to prepare and image thin sections for correlative light microscopy (LM) and backscattered electron imaging in the scanning electron microscope (BSE-SEM). Images of the same fields of view may then be analyzed for degrees of relationships between specimen features not observed by LM or SEM alone. These methods are applied here to study possible associations between the degree of bone mineralization and pattern of collagen fiber orientation in the mid-shaft of the human femur. The "relational images" obtained allow us to examine the relationship between these two variables, both objectively and quantitatively.  相似文献   

9.
0Cr19Ni9N奥氏体不锈钢锻件的再结晶   总被引:1,自引:0,他引:1  
从工业化生产的 0Cr19Ni9N奥氏体不锈钢大锻件实物中取样 ,研究了粗大原始组织的高温再结晶。结果表明 ,通过再结晶可得到细小的均匀组织 ,形变储存能越高 ,再结晶温度越低 ,原始组织晶粒越细 ,再结晶温度也越低。而且 ,提高再结晶温度可显著加速再结晶 ,完全再结晶后 ,其强度下降 ,塑性增加  相似文献   

10.
以热加工过程的金属学理论为基础,将金属的宏观热塑变形参数和内部能量状态引入以正六边形为基元的元胞自动机仿真方法,建立定量化、可视化的动态再结晶二维元胞自动机模型。模型中充分考虑了形核率、临界形核位错密度、位错密度增长以及再结晶晶粒长大驱动力和内部能量状态等多方面因素,可模拟加工硬化、动态回复、形核以及再结晶晶粒长大等一系列过程。利用该模型以纯铜为例对不同温度、不同应变速度下的动态再结晶过程进行模拟,再现动态再结晶形核、晶粒长大的微观组织演变过程,定量分析动态再结晶的动力学特征,并在该模型的基础上分析应变速率对动态再结晶过程以及再结晶晶粒尺寸的影响。模拟结果与相同热变形条件下的纯铜试验结果基本吻合。  相似文献   

11.
A new type of image, existing only at field strengths below the denaturation field strengths of molecules, has been discorvered. This type of image has structure, is not symmetrical and thus differs from previously reported low field strength images. The possibility that macromolecules adsorbed on tip surfaces produce such structured images has been exhaustively investigated. The result is that no observation has been found which disproves this hypothesis and many tests conducted in such attempts yielded correlations consistent with this hypothesis. It is therefore concluded that it is highly probable that biomolecules produce structured images and that it is highly improbable that these correlations represent a chance event. On the other hand, these correlations may be due to some cause unknown to the authors; but we consider this possibility to be unlikely. Some micrographs have been obtained which provide a reasonable basis for the hope that tertiary structure information may be defrived from low field strength imaging of partially embedded biomolecules or of biomolecules that are resistant to field denaturation during imaging. Information may presently be obtained from analysis of low field strength ion micrographs about the size and shape of some biomolecules.  相似文献   

12.
为研究纳米压印中单晶铜亚表层晶体结构演变机理,采用分子动力学方法构建纳米压印仿真模型并模拟单晶铜纳米压印过程。采用改进的中心对称参数法分析单晶铜试件位错形核过程及缺陷演化机理,发现纳米压印时位错缺陷在压头下方形核并沿{1 1 1}滑移系向试件内部扩展形成堆垛层错,试件表面有原子台阶残留,试件亚表面损伤层存在V形位错等典型缺陷。针对位错形核区域及位错扩展区域材料晶体结构状态的识别,采用球谐函数法对模拟结果进行分析。由分析结果可知:位错形核区域材料晶体结构由FCC转变为排列更为紧密的HCP和ICO结构;位错扩展区域材料主要转变为DFCC结构。  相似文献   

13.
When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three‐dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze‐fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block‐face, SBF‐SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.  相似文献   

14.
A technique is described to image two phases (alumina and spinel) within a metal-matrix composite which takes advantage of charging effects that occur during examination in an SEM. Microscope and specimen parameters which affect the amount of contrast generated via charging are discussed, and imaging strategies are introduced to optimize the effect. “Model” metal-matrix composite specimens were developed to verify the degree of charging in each phase.  相似文献   

15.
16.
The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy‐dispersive X‐ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE.  相似文献   

17.
Fitting L  Thiel S  Schmehl A  Mannhart J  Muller DA 《Ultramicroscopy》2006,106(11-12):1053-1061
A screw dislocation network at the low-angle SrTiO3/Nb:SrTiO3 twist grain boundary has been analyzed by annular dark field (ADF) imaging and spatially resolved electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). The cores of one set of dislocations running parallel to the beam direction appear dark in the ADF STEM images. EELS on the dislocation core reveals a reduced Sr/Ti ratio compared to the bulk suggesting Sr-deficient cores. The second set of dislocations, orthogonal to the latter, is imaged by its strain field using low-angle annular dark field (LAADF) imaging. Multislice image simulations suggest channeling of the electron probe on the atomic columns for small tilts, theta < 1 degree, where the Sr columns act as beam guides. Only for larger tilts is the channeling effect strongly reduced and the fringe contrast approaches the value predicted by a purely incoherent imaging model. Ti-L(2,3) EELS across the dislocation core shows an asymmetry between the EELS and the ADF signal which cannot be explained by the geometry or beam broadening. This asymmetry might be explained by an effective nonlocal potential representing inelastic scattering in EELS.  相似文献   

18.
The image obtained in a conventional transmission electron microscope contains contributions from elastically and from inelastically scattered electrons. The electron spectroscopic imaging mode of an energy-filtering transmission electron microscope allows us to separate these two different contributions by inserting an energy-selecting slit in the energy-dispersive plane of an imaging energy filter. Selecting a specific energy loss corresponding to the ionization of the inner shell of a particular element one can obtain information on the distribution of the element within the specimen. The contrast is then caused by inelastically scattered electrons. For crystalline specimens, however, the contrast will be influenced additionally by the elastic contrast. This elastic contrast arises from electron diffraction and increases with increasing crystal thickness. Therefore the intensity distribution in the image cannot directly be interpreted as an elemental map. For a reliable interpretation of contrast formation in elemental maps it is therefore necessary to compute theoretical energy-loss images for various crystal thicknesses and compare these images with the experimental images. As an example we discuss the influence of electron diffraction effects on energy-loss images of two crystals with planar defects. Linescans are computed for various thicknesses of these crystals. Our calculations are performed using first-order perturbation theory to describe the transitions between the Bloch-wave states of the incident electron. The computed linescans for various crystal thicknesses show clearly that the influence of the elastic contrast on an image increases when we investigate thicker specimens. Furthermore, the comparison between elastic and energy-loss images demonstrates the partial preservation of the elastic contrast as a function of thickness. We find that for specimens thicker than about one third of the extinction length (here approximately 80-100 A) it is impossible to interpret an energy-loss image directly as elemental map.  相似文献   

19.
Dislocation structures and their effect on the superdislocation motion in Ni3Ge single crystals have been studied by two-step deformation. In these tests either octahedral or cube slips were induced by prestraining. A difference in the induced dislocation structure is found to cause a notable change in the second deformation step depending on the combination of the stress axes. In order to understand the orientation sensitive hardening, in-situ deformation experiments have been made on the prestrained specimens in a high voltage electron microscope. Besides observation of the structural change due to dislocation motion, electron irradiation, which decorates antiphase boundary tubes, is utilized to trace the history of the rapid dislocation motion. Based on these observations, the origin of the anomalous strengthening in Ni3Ge is discussed with particular interest in the fine and non-planar dislocation structures induced by cross slips and dislocation–dislocation interactions.  相似文献   

20.
We propose a method to image the surface topography of transparent objects. The space between the object and the opposite closely positioned surface (such as a cover glass or a slide) is filled with a strongly absorbing dye. The contrast is generated by recording a transmission image at a wavelength where the dye absorbs. Since the transmitted intensity depends on the depth of the dye layer, it carries information about the relief of the tested surface. With sufficiently concentrated dyes, nanometre unevenness of a surface can be detected. By using less-concentrated solutions, it is possible to image and measure larger objects, such as biological cells. At the present stage, biological applications of the method are only semi-quantitative, but the method still provides detailed information about cell shapes that is not readily obtainable with other imaging techniques.
  Conversion of the image grey scale into the units of vertical distance requires knowledge of the absorption coefficient of the dye. The same method that is used for imaging can be adapted to measure the absorption coefficient of concentrated dyes. The solution to be analyzed is placed between a glass slide and a spherical lens of known radius. The absorption coefficient is determined from attenuation of transmitted intensity as a function of the distance to the centre. At the same time, the interference pattern in the reflected image allows measurement of the refractive index of the dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号