首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
咪唑啉季铵盐缓蚀剂的复配机理   总被引:1,自引:0,他引:1  
通过电化学测试确定咪唑啉季铵盐(IM)和辛基酚聚氧乙烯醚(OP)两种缓蚀剂的最佳复配比,利用X射线光电子能谱(XPS)分析高温高压CO_2腐蚀条件下缓蚀剂在L245钢表面的吸附特性,结合分子动力学计算研究了复配缓蚀剂的缓蚀机理。结果表明:复配后IM缓蚀剂分子在金属表面吸附量增加,同时OP分子的吸附提高了IM缓蚀剂分子在金属表面的吸附覆盖程度,形成致密的保护膜,阻碍溶液中腐蚀性介质对金属表面的侵蚀,有效保护基体减缓腐蚀,从而使得IM和OP复配后的缓蚀率明显升高;IM与OP复配后缓蚀剂分子在Fe(001)表面的吸附强度增大,说明缓蚀剂分子的缓蚀性能本质上是由缓蚀剂分子与金属表面的电子转移行为所决定的。  相似文献   

2.
采用失重法、电化学阻抗谱、极化曲线及量子化学计算研究了月桂酰两性基单乙酸钠在4.0%(质量分数,下同)柠檬酸溶液中对Q235碳钢的缓蚀行为。结果表明,月桂酰缓蚀剂具有较好的缓蚀效果,当其质量分数达到0.8%时,缓蚀率达到78.44%。电化学试验表明,该缓蚀剂在金属表面以吸附的形式形成一种覆盖膜,主要是以阳极抑制为主的混合型缓蚀剂。通过量子化学计算了缓蚀剂分子的LUMO、HOMO轨道能量,得出缓蚀剂羧基上的氧原子是吸附成膜的活性位点。  相似文献   

3.
目的 开发环境友好、抗高温耐浓酸的长效缓蚀剂复配体系.方法 采用红外光谱仪对席夫碱基吡啶季铵盐的分子结构进行表征,采用高温高压腐蚀测定仪、吸附等温模型、动力学参数、扫描电镜和量子化学计算,研究了缓蚀剂对N80的缓蚀性能及其吸附机理.结果 在120、140、160℃温度下,随着席夫碱基吡啶季铵盐缓蚀剂(以下简称Shif-PyQA)质量分数的增大,腐蚀速率在低浓度时大幅减小,缓蚀率在低浓度时大幅增加,两者在高浓度时均逐渐趋于平稳.在所测温度范围内,N80在空白溶液中的腐蚀速率远大于在加有Shif-PyQA溶液中的腐蚀速率.随着温度的升高或反应时间的增加,N80的腐蚀速率持续增大,缓蚀率逐渐减小,但减小幅度不大.当温度为120℃、Shif-PyQA质量分数为2%时,N80在20%盐酸中的腐蚀速率为28.77 g/(m2·h),缓蚀率为97.97%;当温度为140℃、Shif-PyQA质量分数为3%时,N80在20%盐酸中的腐蚀速率为37.12 g/(m2·h),缓蚀率为97.71%;当温度为160℃、Shif-PyQA质量分数为4%时,N80在20%盐酸中的腐蚀速率为63.91 g/(m2·h),缓蚀率为96.41%.Shif-PyQA在N80表面的吸附遵循Langmuir等温吸附模型,属于单分子层化学吸附,且N80表面的吸附为自发过程.动力学参数结果表明,添加不同质量分数的Shif-PyQA后,活化能大大增加为74.16~88.43 kJ/mol,属化学吸附.量子化学研究表明,席夫碱基吡啶季铵盐(以下简称PyQ-S)分子可与金属形成多中心的稳定吸附,同时PyQ-S分子接受电子的趋势大于供出电子的趋势.结论 Shif-PyQA在温度为120、140、160℃时,均可达到SY/T 5405—2019中相关指标要求,对N80具有较好的缓蚀作用.  相似文献   

4.
缓蚀剂是阻止或延缓换热设备、石油开采及其他领域金属发生腐蚀,保护机械设备安全运行的一种行之有效、经济效益显著的技术手段。文中选用了一种新型季铵盐类双子表面活性剂作为缓蚀剂,运用失重实验、电化学实验、量子化学计算等多种方法测试了所选化合物在3.5%NaCl溶液中对铜的缓蚀性能,从理论上探讨了缓蚀剂分子与金属表面的作用方式。失重、电化学实验结果表明,缓蚀剂对铜有较好的缓蚀效果和较高的缓蚀效率,在100mg·L~(-1)时对铜的缓蚀效率达到93.9%。通过吸附模型以及量子化学模拟证明缓蚀剂符合Langmuir吸附等温模型,缓蚀剂分子的吸附机理为化学吸附。  相似文献   

5.
以喹啉为母体,以氯化苄、溴化苄为季铵化试剂,制得两种喹啉季铵盐缓蚀剂。采用失重法、电化学方法、扫描电镜(SEM)及能谱分析(EDS)法考察两种缓蚀剂单独使用以及不同复配条件下的缓蚀性能。结果表明:溴化苄基喹啉(BQB)与增效剂复配后,其缓蚀率可以达到98.73%;在相同条件下BQB的缓蚀性能优于氯化苄基喹啉(BQC)的;两种喹啉季铵盐在碳钢表面的吸附符合Langmuir吸附等温式,是一个自发、放热的混合吸附过程;BQC的吉布斯吸附自由能和活化能均大于BQB的。  相似文献   

6.
王梦  张静 《表面技术》2018,47(10):208-215
首先分别论述了单组分缓蚀剂和复配型缓蚀剂的缓蚀机理,即不同类型的缓蚀剂在金属表面所具有的不同吸附过程。单组分缓蚀剂中特殊的分子基团在金属表面通过物理吸附、化学吸附或混合吸附过程起到缓蚀作用,复配型缓蚀剂在金属表面通过各组分间协同吸附或竞争吸附过程起到缓蚀作用,并指出了缓蚀机理的研究所存在的问题。然后,主要综述了近几年来国内外对用于二氧化碳腐蚀缓蚀剂的研究进展,包括咪唑啉衍生物、表面活性剂、季铵盐、有机胺和复配型缓蚀剂,结合缓蚀剂的分子结构和缓蚀效率等对其进行了阐述。介绍了几种用于二氧化碳腐蚀的新型缓蚀剂,如多活性位点有机化合物、硫醇、席夫碱和聚合物等。最后针对二氧化碳腐蚀环境的复杂性,对未来缓蚀剂及其缓蚀机理的研究方向进行了展望。  相似文献   

7.
一种复合型咪唑啉缓蚀剂   总被引:1,自引:0,他引:1  
郭睿  吴从华  左笑  李歌 《腐蚀与防护》2006,27(7):341-343
以油酸和二乙烯三胺为原料合成咪唑啉季铵盐缓蚀剂后,在50℃、5%的盐酸溶液中用静态失重法对咪唑啉季铵盐与阴离子表面活性剂和无机阴离子进行研究,得到了一个与咪唑啉季铵盐有最佳复配效果的复配体,咪唑啉季铵盐与I-复配比为1∶1(质量比)时,缓蚀剂的缓蚀效果最佳。在不同时间和不同温度下对复合型缓蚀剂的缓蚀效率进行了测量。这种缓蚀剂对A3钢的缓蚀率达到99%以上,比单独用咪唑啉季铵盐缓蚀效率提高了0.7%。  相似文献   

8.
氯离子与咪唑啉复配缓蚀剂的合成与应用   总被引:4,自引:2,他引:2  
郭睿  吴从华  左笑  李歌 《表面技术》2006,35(3):64-66
利用油酸和二乙烯三胺为原料合成咪唑啉季铵盐缓蚀剂后,在50℃、5%的盐酸介质中用静态失重法对咪唑啉季铵盐与阴离子表面活性剂和无机阴离子的研究,得到了一个与咪唑啉季铵盐有最佳复配效果的复配体,咪唑啉季铵盐与I-复配比为1:1(质量比)时,缓蚀剂的缓蚀效果最佳.在不同时间和不同温度下对复合型缓蚀剂的缓蚀效率进行了研究.结果表明,新型缓蚀剂对A3钢的缓蚀率达到99%以上,与单独用咪唑啉季铵盐相比,其缓蚀效率提高了0.7%左右.  相似文献   

9.
咪唑啉季铵盐缓蚀剂的合成及缓蚀行为的研究   总被引:1,自引:0,他引:1  
本文以复合固体酸作催化剂,以油酸、二乙烯三胺、氯化苄为主要原料合成了咪唑啉季铵盐。用静态失重法、动电位极化曲线法、电化学阻抗法研究其在15%盐酸溶液中对A3钢的缓蚀性能。实验结果表明,缓蚀剂的缓蚀效率随着缓蚀剂浓度的增加而增加但随着温度的升高而减小。缓蚀剂浓度为10g/L时,用静态失重法测其在60℃15%盐酸溶液中的缓蚀效率为99.18%,当缓蚀剂与KI复配时,两者产生良好的协同效应:缓蚀剂与KI质量比为5:1的时候,缓蚀效率为99.7%。该缓蚀剂在A3钢表面的吸附遵循Langmuir吸附等温模型。动电位极化曲线测试表明该缓蚀剂是以抑制阴极为主的混合型缓蚀剂。  相似文献   

10.
根据季铵化反应原理,以喹啉和1,3-二氯-2-丙醇合成了一种含羟基双季铵盐酸化缓蚀剂(BQ-1)。用红外光谱对其结构进行了表征,采用静态失重法和电化学测试研究了该缓蚀剂在15%HCl溶液中对N80钢的缓蚀性能。结果表明,该缓蚀剂具有明显的腐蚀抑制能力,在15%HCl、90℃下,5mmol/L该缓蚀剂对N80钢片的缓蚀率达96%以上,缓蚀性能优良;此外,该缓蚀剂是一种混合型缓蚀剂,在N80钢片表面的吸附作用符合Langmuir等温吸附规律。表面分析试验(SEM和EDS)验证了缓蚀剂分子在N80钢片表面确实形成了一层保护膜。  相似文献   

11.
利用邻氧乙酸苯甲醛缩对氨基苯磺酸钾盐席夫碱(K2L)缓蚀剂在20#碳钢表面制备自组装单分子膜(SAMs),并通过电化学方法研究缓蚀剂自组装膜的最佳组装时间;采用电化学测试技术和表面分析技术研究K2L-SAMs对碳钢在饱和CO2油田水介质中的缓蚀行为;采用密度泛函理论分析缓蚀剂分子的前线轨道、Mulliken电荷和分子静电势。结果表明:缓蚀剂在碳钢表面自组装3 h后,可以形成稳定、致密的缓蚀膜;在碳钢表面形成的K2L-SAMs能有效抑制碳钢的阴极还原过程,最高缓蚀效率达87.55%;K2L的吸附行为符合Langmuir吸附等温式,吸附机理为典型的化学吸附。量子化学计算结果表明:羧基是K2L分子的主要吸附活性区域,能与碳钢表面铁原子作用形成稳定的配位键。  相似文献   

12.
用静态和动态腐蚀失重法研究喹啉季铵盐、吡啶季铵盐、曼尼希碱和咪唑啉季铵盐四种不同主体类型缓蚀剂在高温高压H2S/CO2环境中N80钢的缓蚀性能,并结合扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表面分析技术研究了不同缓蚀剂主体分子结构与缓蚀性能的关系。结果表明,四类缓蚀剂的缓蚀效率的大小顺序是:喹啉季铵盐>吡啶季铵盐>曼尼希碱>咪唑啉季铵盐。喹啉季铵盐与其他三种缓蚀剂主体分子结构相比具有更好的抗硫性能,其对N80钢具有良好的吸附性能,可形成抗腐蚀性介质渗透能力强的致密均匀和稳定不易分解的有机膜。其缓蚀剂用量为0.15%时,缓蚀率可达97%。  相似文献   

13.
黄文恒  黄茜  鲜磊  曹琨 《表面技术》2019,48(11):356-364
目的研究丙氨酸和碘化钾共同存在于硫酸溶液中,对碳钢的协同缓蚀作用。方法采用极化曲线、交流阻抗谱、扫描电镜、X射线光电子能谱(XPS)以及El-Awady动力学模型,对丙氨酸、丙氨酸与碘化钾复配缓蚀剂对碳钢在硫酸介质中的缓蚀性能和吸附机理进行探究。结果在10%的硫酸体系中,对碳钢的缓蚀性能随着缓蚀剂浓度增大而增强。单独使用丙氨酸作为缓蚀剂,丙氨酸分子在碳钢表面呈单分子层吸附,缓蚀效率最高仅达到29%,缓蚀效果不明显。经过丙氨酸与碘化钾复配后,缓蚀效果显著提高,当丙氨酸质量浓度为300 mg/L,碘化钾质量浓度为250 mg/L时,缓蚀效率达到92%以上。XPS谱图表明,缓蚀剂主要是通过分子中的N原子与碳钢表面Fe原子形成共价键,吸附在碳钢的表面,与KI复配后,I-吸附在碳钢表面,并部分氧化,形成I_3~-。El-Awady动力学模型研究说明该复配缓蚀剂为混合型缓蚀剂,且在碳钢表面自发形成多分子层吸附膜。结论在10%的硫酸溶液中,丙氨酸分子通过物理吸附或化学吸附作用,吸附在碳钢表面,减缓腐蚀反应发生。碘化钾添加后,发挥连接缓蚀剂分子和碳钢表面的桥梁作用,从而协助丙氨酸吸附到碳钢表面,提高丙氨酸在碳钢表面的覆盖率,在提高缓蚀效率的同时,减少了丙氨酸的使用量,有效地抑制了钢材的腐蚀。  相似文献   

14.
以喹啉和双卤代烃为原料经季铵化反应合成了三种喹啉型双季铵盐酸化缓蚀剂:溴化1,4-二喹啉丁烷(Q-4-Q)、溴化1,6-二喹啉己烷(Q-6-Q)和溴化1,8-二喹啉辛烷(Q-8-Q),采用核磁共振氢谱对其结构进行表征。采用失重法,电化学方法和SEM等方法研究了三种产物在15%HCl溶液中对N80钢的缓蚀性能。结果表明,Q-8-Q的缓蚀性能最佳;双季铵盐Q-8-Q与肉桂醛(CA)最佳复配比为cQ-8-Q∶cCA=1∶1。在15%HCl,90℃条件下,6mmol/L该复配缓蚀剂对N80钢片的缓蚀率达99.79%,缓蚀性能优良;缓蚀剂分子在N80钢片表面形成一层保护膜;该复配缓蚀剂能有效抑制酸液对N80钢表面的腐蚀,是一种以抑制阴极反应为主、属"负催化效应"作用机理的混合型缓蚀剂。  相似文献   

15.
以碳酸环己胺(CHC)为主体,通过与其它缓蚀剂复配,筛选出可用于铸铁文物保护的高效复合气相缓蚀剂。用极化曲线,电化学阻抗谱和XPS等手段研究了该复合气相缓蚀剂的缓蚀作用机理。结果表明:CHC与乌洛托品复配,具有良好的协同缓蚀效果,当乌洛托品与CHC以1∶4的质量比复配时,缓蚀率可达96.61%。该复合气相缓蚀剂是以抑制阳极反应为主的混合型缓蚀剂,能够和铸铁发生化学吸附而形成缓蚀性能良好的保护膜。  相似文献   

16.
目的 探究双咪唑啉(PMA)在CO2/O2环境中对碳钢的缓蚀作用及其与2-巯基乙醇(MAT)复配时的缓蚀性能和机理。方法 采用红外光谱对合成的PMA进行表征,运用失重法、电化学测试技术(阻抗谱和极化曲线)和表面形貌分析等手段评价PMA的缓蚀性能,同时探究PMA与MAT复配后的协同缓蚀作用。通过量子化学计算和分子动力学模拟,分析PMA与MAT分子的吸附活性位点和吸附能力。结果 失重实验结果表明,CO2/O2环境中添加100 mg/L PMA时,缓蚀率可达66.47%。随MAT浓度的增加,缓蚀效率逐渐提高,当MAT的质量浓度为40 mg/L时,缓蚀率达到最高值(70.38%)。电化学测试结果表明,PMA和MAT复配后,碳钢的腐蚀电位随缓蚀剂浓度的升高而升高,阳极反应受到明显抑制。扫描电镜观察到加入复配缓蚀剂后,碳钢表面光滑,腐蚀深度减小。理论计算结果表明,PMA的活性位点在咪唑啉环上,而MAT的活性位点在硫原子上,二者复配后自由体积分数减小,因此缓蚀效率提高。结论 由于PMA在碳钢表面有较强的吸附能力,因此在CO2/O2环境下的缓蚀效果较好,PMA与MAT表现出较好的协同作用,二者复配后,能够更有效地抑制碳钢在CO2/O2环境中的腐蚀。缓蚀机理为PMA在碳钢表面形成一层保护膜,MAT的加入使保护膜更加致密。  相似文献   

17.
硫酸介质中Gemini表面活性剂对碳钢的吸附缓蚀性能   总被引:1,自引:0,他引:1  
通过失重法和极化曲线法研究了阳离子季铵盐型Gemini表面活性剂Π-14-3及其添加卤离子的复配体系对A3钢在硫酸溶液中的缓蚀性能及其机理.结果表明,表面活性剂分子Π-14-3对A3钢在0.5 mol/L的硫酸中具有很好的缓蚀性能;在缓蚀剂浓度很低时,通过加入一定量的卤离子,可以得到较高的缓蚀性能,从而降低其应用成本;在硫酸介质中,Gemini表面活性剂在金属表面的吸附符合Langmuir吸附机理.  相似文献   

18.
张朔  李洪俊  徐庆祥  马田力  李楠 《表面技术》2017,46(10):229-233
目的改善缓蚀剂在高温酸液中的缓蚀性能,满足油田高温井酸化施工的要求。方法在合成一种新型吡啶季铵盐的基础上,添加炔醇、碘化钾等助剂进行复配,得到一种新型高温酸化缓蚀剂HTCI-1。使用HK-1高温高压动态腐蚀仪对其缓蚀性能进行测试,通过电化学测试、SEM、EDS等实验对其缓蚀机理进行分析。结果该酸化缓蚀剂在160℃、16 MPa、20%HCl或者土酸(12%HCl+3%HF)、质量分数3.0%的条件下,使N80试片的腐蚀速率分别为24.53 g/(m~2·h)和23.72 g/(m~2·h),达到了SY/T 5405—1996中的一级指标。结论在高温酸液中,N80钢片腐蚀速率降低,主要是由于缓蚀剂分子吸附到碳钢表面形成了一层致密的疏水性吸附膜,从而降低了侵蚀性离子与钢铁表面接触的几率,腐蚀电极反应过程受到抑制,达到了高温条件下防护金属的目的。  相似文献   

19.
合成了一种改性聚酰胺类缓蚀剂,采用动态失重法和动电位极化曲线评价了其在CO2腐蚀体系中对N80钢的缓蚀性能,并和咪唑啉季铵盐的缓蚀性能进行了比较。通过量子化学半经验算法AM1方法,计算了改性聚酰胺和咪唑啉季铵盐的最高占有轨道能级(EHOMO)和最低未占有轨道能级(ELUMO),探讨了改性聚酰胺的缓蚀机理。结果表明:所合成的改性聚酰胺对二氧化碳腐蚀具有很好的抑制作用,但效果逊于咪唑啉季铵盐。它是一种以抑制阳极过程为主的混合型缓蚀剂,可能是通过多个吸附中心与金属形成牢固的配位键,起到保护金属的作用。  相似文献   

20.
唑类缓蚀剂在铜表面的吸附机理   总被引:1,自引:3,他引:1  
目的对比三氮唑(TA)和苯并三氮唑(BTA)两种缓蚀剂的缓蚀性能,明确两种缓蚀剂在铜表面的吸附类型,并从实验和分子模拟角度解释其吸附机理。方法采用动电位极化曲线法测试两种缓蚀剂的缓蚀效率,采用吸附等温拟合方法确定两种缓蚀剂的吸附类型,采用分子模拟中的量子化学计算方法计算两种缓蚀剂在铜表面的吸附能、形变电荷密度和分波态密度等参数,深入揭示其吸附机理。结果在不同浓度下,BTA的缓蚀效率均大于TA。两种缓蚀剂浓度与覆盖度的关系符合Langmuir吸附模型,其吸附自由能介于-35~-37 k J/mol之间。BTA在铜表面的吸附能绝对值(顶位为4.41 e V,桥位为4.36e V)要大于TA的吸附能绝对值(3.28 e V),吸附过程发生了明显的电荷转移,电子云处于两个成键原子之间,且N原子s,p轨道与Cu原子d轨道发生重叠。中性和质子化形式的两种缓蚀剂分子均可在铜表面发生平行吸附。结论由于BTA在铜表面的吸附能力强于TA,因此BTA的缓蚀性能优于TA。两种缓蚀剂在铜表面既能发生化学吸附,又能发生物理吸附。化学吸附是由于N原子的s,p轨道与Cu原子d轨道相互作用所致,物理吸附是由于中性分子的范德华相互作用和质子化分子的静电相互作用所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号