首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
煤直接液化与残渣热解联合加工技术   总被引:1,自引:0,他引:1       下载免费PDF全文
朱豫飞 《煤炭学报》2013,38(8):1454-1458
为解决煤直接液化技术中残渣收率偏高和溶剂油短缺等问题,开发了煤直接液化与残渣热解联合加工技术,通过试验研究了神华煤直接液化技术所得液化残渣的热解过程的反应规律,得到了适宜的工艺条件以及该条件下的产品分布和产品性质,研究了残渣热解油在加氢处理过程中产品的芳碳率与反应条件的关系,确定了产品芳碳率在0.40~0.45范围内的工艺条件。试验结果表明,残渣热解油经适当的加氢后可以为煤直接液化装置提供理想的供氢性溶剂油,说明煤直接液化与残渣热解联合加工从技术上是可行的。与煤直接液化单独加工技术相比,联合加工技术可以增加液体产品收率5.8%(对煤直接液化原料煤),并且可以补充4%(对煤直接液化原料煤)的理想的供氢性溶剂油。  相似文献   

2.
为了验证专利商Axens公司推荐的加氢精制催化剂A能否满足神华煤直接液化示范工程的操作要求,在小型加氢精制装置上进行了加工煤液化油品的研究,在中型加氢稳定装置上进行了利用蒽油和洗油混合原料制备煤直接液化单元首次开车所需开工溶剂和加工煤液化油品的研究.试验结果表明,A催化剂具有良好的初活性、低温活性、及适当的脱芳碳活性,加氢精制催化剂的性能,能够满足利用蒽油和洗油制备煤直接液化单元开工用溶剂和加工煤液化油品,为煤液化生产循环供氢溶剂油的要求.  相似文献   

3.
吴秀章  舒歌平 《煤炭学报》2009,34(11):1527-1530
在日处理6 t煤直接液化工艺开发装置(PDU)上,以焦油加工的溶剂作为起始溶剂,考察了在神东上湾煤直接液化过程中循环溶剂性质变化规律以及对煤液化过程和产品的影响.研究表明,起始溶剂在开始过程对煤直接液化反应以及产品性质、煤浆性质、煤浆预热炉压差等有较大影响;溶剂循环约14 d后,起始溶剂的影响基本消除,溶剂性质趋于稳定.  相似文献   

4.
低级酚的分离可提高煤炭直接液化的经济性且降低液化油后期加工的氢耗,从而增强煤炭直接液化技术的竞争力。配制不同比例的四氢萘、十氢萘混合溶剂并将其作为艾丁低阶煤直接液化的供氢溶剂,在高压釜四氢萘溶剂条件下进行艾丁低阶煤直接液化对比实验,以考察对低级酚生成的影响。研究结果表明:四氢萘与十氢萘比例为1∶1时,因溶剂供氢能力不足,煤液化反应发生结焦现象;当四氢萘与十氢萘比例为3∶1时,虽混合溶剂的供氢性比四氢萘溶剂降低,但反应取得了较好的效果,相比较完全四氢萘溶剂条件下粗酚产量能(IBP~230℃)明显提高,低级酚产量几乎相同,不同种类的低级酚产量略有差别,油产率、转化率出现了一定程度的上升,气产率略有下降。艾丁低阶煤加氢液化产物中的低级酚包括苯酚、邻甲酚、间甲酚、对甲酚、2,3-二甲酚、2,4-二甲酚、2,5-二甲酚、2,6-二甲酚、3,4-二甲酚和3,5-二甲酚,而十氢萘的加入虽减弱溶剂的供氢性,但未对低级酚产量产生明显影响。  相似文献   

5.
以神华百万吨级煤直接液化示范装置原料煤为原料,在0.18t/d煤直接液化连续试验装置上开展了神华煤直接液化试验研究,对神华煤直接液化工艺进行了改进,并与神华煤直接液化工艺试验结果进行了对比。结果表明,采用神华煤直接液化工艺时,神华煤的液化转化率为89.89%,蒸馏油收率和萃取油收率分别为53.79%和60.37%,气产率和氢耗分别为15.42%和5.75%;在神华工艺两台串联反应器间设置中间分离器,将煤直接液化反应由一个体系划分为两个体系,神华煤的液化转化率为91.10%,蒸馏油收率和萃取油收率分别为56.76%和64.36%,气产率和氢耗分别为13.98%和5.79%,与神华煤直接液化工艺相比,神华煤的液化转化率提高了1.2个百分点以上,蒸馏油收率增加了约3个百分点,萃取油收率增加了约4.0个百分点,气产率降低了约1.5个百分点,氢耗变化不大。  相似文献   

6.
煤直接液化复杂多相体系中重组分轻质化过程中,氢传递与催化机理的探究对于了解煤液化过程,提高氢利用程度以及煤的加氢转化都有非常重要的意义。以新疆淖毛湖煤和四氢萘为原料,分别在N2和H2气氛下进行了高压釜试验研究,并与各自的催化剂添加体系比对,讨论了临氮热裂化,临氮催化裂化,临氢热裂化和临氢催化裂化不同供氢环境下,煤加氢液化复杂多相体系催化机理和氢的过程传递。结果表明,催化剂促进了气相氢的活化,促进了活性氢分别向煤的热解产物和溶剂转移,也促进了溶剂中的氢向煤的热解产物转移,有利于煤的转化和油产率的提升。本实验条件下,与气相氢相比,溶剂对于活性氢的贡献更大,约为气相氢贡献的2倍,且气相氢供氢量和溶剂供氢量均与煤和沥青质向油气转化呈正向相关。  相似文献   

7.
提高供氢溶剂的供氢能力是煤直接液化技术开发的重点之一,而多环芳烃加氢之后获得的氢化芳烃是煤直接液化的有效供氢溶剂组分。调控加氢深度是提高供氢性能的有效措施。文章介绍了多环芳烃萘、蒽和菲的加氢路径,并介绍了工艺条件和催化剂种类对其加氢产物选择性的影响。芳烃的环数越多,其加氢程度越难;使用CoMo类、NiCl过渡金属类等催化剂和调控加氢条件均有利于生成加氢中间产物,但目前二、三环氢化芳烃的工艺条件开发尚不成熟。此外芳烃加氢反应基本为一级反应,且首环加氢速率最快;加氢平衡常数随温度的升高而降低。将热力学、动力学和分子模拟结合,可实现生产高效氢化芳烃的目的。  相似文献   

8.
为获得新疆东疆地区丰富煤炭资源合理高效利用的途径,分析了新疆淖毛湖煤的煤质特点,进行了新疆淖毛湖煤直接加氢液化特性的研究。以新疆淖毛湖煤和四氢萘为原料,在2 L高压釜中进行加氢液化试验,考察了反应温度、反应压力、停留时间以及催化剂对氢耗率、气产率、转化率、油产率和沥青类物质产率的影响规律。结果表明,新疆淖毛湖煤具有高挥发分,高镜质组含量和高氢碳比的煤质特征,特别是加氢液化的活性组分高达96.4%; 420℃,15 MPa和60 min的反应条件下,煤的转化率可达93%,油产率65%,是一种直接加氢液化的优质原料。直接加氢液化过程中,普通铁系催化剂的添加体系有利于350℃轻质馏分油生成,气产率,水产率和氢耗率均呈现小幅增加; 420℃前后的2段反应温区,温度变化对液化效果及产物分布影响呈现显著差异;反应压力对转化率和油产率的影响缓和,高氢压有利于沥青类物质向油和气转化,也有利于350℃液化轻质馏分油生成;30 min,淖毛湖煤呈现出良好的液化效果和反应性能,60 min,有利于沥青类物质向气和350℃的轻质馏分油转化,停留时间进一步延长将引发沥青类物质的缩聚反应和液化油的过度加氢,导致油产率降低。淖毛湖煤直接加氢液化特性的研究为淖毛湖煤加氢液化工艺放大研究提供了基础数据,也为新疆立足本区资源优势,促进经济发展提供了技术参考。  相似文献   

9.
研究液化反应过程中氢的迁移与传递对于深化认识煤的加氢转化、提升氢气利用效率均非常重要,虽目前已采用同位素示踪技术从氢的来源、氢的活化和氢的传递等方面探讨煤直接液化过程中氢转移反应的相互作用和影响,但还需对煤直接液化加氢过程中氢的分布、参与反应的煤的分子结构等信息从分子层面进行详细阐述。针对新疆淖毛湖煤在四氢萘为溶剂条件下的加氘液化反应行为进行研究,探究动力学氘同位素效应对液化过程的影响规律,并借助ESI-FT-ICR MS表征手段以分析煤液化液固产物杂原子化合物中氘原子的分布特征与结构组成。研究结果表明:淖毛湖煤是液化的优良煤种,动力学氘同位素效应导致淖毛湖煤加氘液化性能偏低,加氘产物分子量分布范围缩小,O2、N1O1-2化合物类型相对丰度较高,停留时间缩短,动力学氘同位素效应的干扰减弱;O2类化合物以D3、D4相对丰度最高,碳数分布C13~C23,推测可能是苯并呋喃醇、二苯并吡喃酮、芳二酚类化合物;与O  相似文献   

10.
李孝亭  张大鹏 《中国煤炭》2000,26(12):58-60
3 共同液化 它指同时对煤和非煤烃类液体的提质加工。烃类液体也可作为制备煤浆和运移煤的介质,通常是一种价值低、沸点高的物质,例如传统原油提炼过程中生产的沥青、超重质原油、蒸馏残渣或焦油。共同液化的基本工艺采用单段或两段形式,溶剂不进行循环使用。一般地,共同液化技术基于现有的直接液化工艺,是一次通过无循环的液化过程。大部分液体产生于油,而不是煤。 共同液化在煤炭液化的同时将石油提炼出的溶剂提质,这样可以降低单位产品的投资和操作费用。但是,非煤溶剂的物理性能较差,其供氢能力也弱。这将导致煤转化成液体产…  相似文献   

11.
梁江朋 《煤炭学报》2018,43(12):3518-3524
为了研究固体酸催化艾丁褐煤直接液化反应特性,通过微型高压釜进行了艾丁褐煤加氢液化试验,考察了反应温度、氢气初压、催化剂添加量和溶剂量对SO2-4/Fe2O3固体酸催化艾丁褐煤液化性能的影响,并基于产物分布、元素分析和1H-NMR表征,探讨了SO2-4/Fe2O3固体酸催化艾丁褐煤液化反应特性及催化作用。结果表明,反应温度、压力、催化剂添加量和溶剂量的提高有利于油产率和转化率的增加,其中压力的影响相对较小;反应温度、催化剂添加量和溶剂量的提高有利于酚产率的增加,但压力的提高对酚产率影响很小;反应温度和催化剂添加量的提高有利于低级酚产率的增加,但压力和溶剂量的提高则抑制低级酚的生成;反应温度高于420 ℃后,沥青质中的含氧结构才能更大程度的转化为油和酚。  相似文献   

12.
The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabilized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal liquefaction (CDCL) process is presented based on the mechanism study of coal liquefaction. Supported by the National Basic Research Program of China (973 Program) (2004CB217605)  相似文献   

13.
门卓武  李初福  翁力  刘科 《煤炭学报》2015,40(3):690-694
煤低温热解和直接液化之间具有很多耦合要素,提出将两者集成联产系统,用煤气制氢替代煤气化制氢来降低成本、用煤焦油作补充溶剂油实现提质加工、将液化残渣与煤共热解提取高附加值油品,实现各副产物综合利用,达到系统价值最大化。基础实验研究表明,神东长焰煤与液化残渣(煤渣质量比为95∶5)共热解焦油干基产率约为8.0%,煤气有效成分大于85%;为使共热解过程不结块,液化残渣掺入量应小于30%。模拟计算表明,百万吨级煤直接液化与千万吨级煤低温热解联产,可以省却煤气化制氢及空分装置,系统能量转化效率达到75%以上,协同效应显著。  相似文献   

14.
张传江  赵鹏  李克健 《煤炭学报》2007,32(2):202-205
用日本0.5 L卧式震荡高压釜研究了新疆黑山烟煤与塔河石油渣油共处理液化的反应过程,考察了石油渣油不同添加量对煤液化效果的影响,并与黑山烟煤单独液化效果进行了对比.实验结果表明,与黑山烟煤单独液化相比,煤油共处理具有氢耗低,气产率低,油产率高的特点,渣油适量的添加可以促进煤炭转化,提高油产率.本次研究石油渣油最佳的添加量为20%,与煤单独处理的结果相比,转化率高1.5%,油产率高11%.  相似文献   

15.
以空化洗油为溶胀剂,优化新疆西沟煤微波溶胀条件,考察微波溶胀对煤样直接液化性能的影响及其动力学分析。在微波时间55 min、功率600 W和温度344 K条件下,煤样溶胀度达到1.625,且发现其微波溶胀是一个膨胀-微爆-碎裂-再膨胀-再微爆的过程。热解动力学研究表明,与原煤样相比,在623~773 K中温段,煤样经微波溶胀后活化能从99.95 k J/mol减小至89.51 kJ/mol,相对降低了10.45%。液化动力学研究表明,经微波溶胀后,煤样的转化速率常数从0.019 39 s~(-1)增加到0.050 08 s~(-1),相对提高了158%。与原煤样相比,微波溶胀煤样从煤和前沥青烯转化为油的速率常数分别相对提高了170%和258%,且增加了沥青烯生成油的反应途径,其速率常数为0.039 33 s~(-1)。因此,微波溶胀不仅降低了煤样热解中温段的活化能,而且改善了煤样直接液化效果。  相似文献   

16.
李刚  凌开成 《煤炭学报》2007,32(9):975-979
根据表观活化能的突跃性变化,煤直接液化过程可以划分为3个动力学阶段:初始高反应活性、慢速加氢和缩聚反应阶段.其根源是煤分子结构中桥键和芳键键能之间的突跃性变化.煤的高温快速液化就是让反应仅持续完初始高反应活性阶段(~5 min)即终止的一种煤直接液化方法,液化温度由TG曲线所反映的活泼热分解温度上限(~500 ℃)来确定,要求煤粉与优秀供氢溶剂充分接触,并由此引出了“理想液化”的理论假设.最后探讨了煤高温快速液化在工业上和学术上可能的应用.  相似文献   

17.
对神华上湾煤直接液化油品进行了加氢稳定和加氢改质的试验研究,研究结果表明煤液化重油经过加氢稳定处理后,可以生产出煤液化需要的供氢溶剂;煤液化轻油经过加氢稳定后中间馏分的十六烷值低、密度高,还需进一步加工。加氢改质是一种有效改善油品质量的方法;研究表明加氢改质小于150℃石脑油馏分是很好的催化重整原料;加氢改质后的大于150℃柴油馏分性质全面满足环烷基原油生产的轻柴油国家标准;试验还表明加氢改质柴油馏分对十六烷值改进剂具有良好的感受性,通过添加1000ppm的十六烷值改进剂可以生产出满足欧Ⅱ排放标准的柴油产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号