首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
对先驱体硅树脂高温(800~1400℃)转化陶瓷接头连接石墨、陶瓷SiC及Cf/SiC复合材料进行了研究,着重对硅树脂固化裂解过程、硅树脂溶液浓度及裂解温度对连接性能的影响进行了探讨.研究表明,硅树脂的交联固化主要是通过消耗Si-OH来完成,先驱体溶液的浓度及裂解温度根据基材的不同而有不同影响.  相似文献   

2.
先驱体陶瓷具有分子结构可设计、化学组成可调控、加工成型方便、力学性能优异、易于成型复杂构件、便于实现结构/功能一体化等优点,克服了传统粉末烧结制备陶瓷材料难于设计与成型的问题,对解决航空航天、国防尖端武器装备面临的材料瓶颈问题具有重要意义。在陶瓷增材制造技术的带动下,先驱体陶瓷的发展迎来了新的契机,增材制造先驱体陶瓷的研究得到了越来越多的关注。介绍了增材制造先驱体陶瓷的研究与应用进展,总结了各类陶瓷增材制造技术的优势和不足,并对先驱体陶瓷增材制造目前存在的问题与发展趋势进行了探讨和展望。  相似文献   

3.
液态聚碳硅烷作为一种新型陶瓷先驱体,可通过先驱体浸渍裂解工艺(PIP)制备陶瓷基复合材料(CMC),也可通过包覆有机纤维来提高柔性绝热层的耐烧蚀性能。文中通过红外光谱和核磁共振表征了3种液态聚碳硅烷先驱体VHPCS,VHPCS-S和AHPCS的结构组成,在150℃前的固化反应主要通过C═C键以多种方式进行,与AHPCS相比,VHPCS和VHPCS-S中双键与硅氢键的摩尔比提高了约18.2%;采用非等温差示扫描量热分析(DSC)法研究了3种先驱体及其在交联剂过氧化二异丙苯体系时的固化反应动力学,发现固化反应温度和表观活化能均有所降低,先驱体可以在低温下实现快速交联反应;利用同步热分析和X射线衍射分析了先驱体的陶瓷化过程及裂解产物的结晶行为,VHPCS-S在1200℃时的陶瓷产率高于其余2种先驱体VHPCS与AHPCS。对于DCP/VHPCS-S交联体系,在150℃固化后陶瓷产率达到89.82%。此外,DCP的加入可以有效抑制β-SiC结晶。  相似文献   

4.
先驱体转化法制备碳化硅陶瓷产率研究评述   总被引:2,自引:0,他引:2  
对先驱体转化法制备碳化硅陶瓷产率问题进行了综述.针对先驱体转化法陶瓷产率低的问题,从陶瓷先驱体的设计、先驱体的交联工艺、裂解工艺以及活性填料的添加等方面分析了影响陶瓷产率的各种因素,总结出提高陶瓷产率的措施,最后提出今后进一步研究的方向.  相似文献   

5.
先驱体转化法是制备耐超高温陶瓷和粉体的有效方法之一,但原料种类对先驱体交联固化程度和陶瓷产率的影响鲜有报道。本研究分别采用两种碳源与聚钽氧烷(PTO)合成了TaC先驱体,研究了碳源种类、裂解温度和钽碳比例等因素对先驱体转化法制备TaC陶瓷粉体微观结构及性能的影响。结果表明,含C=C的PF-3树脂可以有效促进PTO的交联固化,提高先驱体的陶瓷产率。当钽碳质量比分别为PTO:PF-3树脂=1:0.25和PTO:2402树脂=1:0.4时,在1400℃下裂解获得的TaC陶瓷粉体不含残余Ta2O5,陶瓷产率分别为54.02%和49.64%,晶粒尺寸分别为47.2和60.9 nm。PF-3树脂在提高陶瓷产率的同时能够减小晶粒尺寸,但对粉体纯度与粒度影响较小。不同碳源制备的TaC陶瓷粉体纯度分别为96.50%和97.36%,中位径分别为131和129 nm。  相似文献   

6.
对先驱体硅树脂高温转化陶瓷接头连接Cf / SiC 复合材料进行了研究。探讨了硅树脂固化裂解过程、惰性及活性填料对连接性能的影响。研究表明, 硅树脂的交联固化主要通过消耗Si —OH 来完成。适当加入惰性填料SiC(5 % ,质量分数) 或活性填料(纳米Al 、Si 粉) 可以大幅度提高硅树脂对Cf / SiC 复合材料的连接性能。  相似文献   

7.
不同陶瓷先驱体的裂解过程及粘接性能   总被引:4,自引:0,他引:4  
研究了三种陶瓷先驱体聚硅氮烷(PSZ)、聚硅氧烷(PSO)、聚碳硅烷(PCS)的裂解过程,并对其裂解产物进行了物相分析,在此基础上分别采用这三种先驱体为粘接剂连接碳化硅陶瓷。结果表明,PSZ、PSO在裂解过程中发生了交联反应,获得了较高的陶瓷产率;PCS交联性能较差,陶瓷产率较低;由XRD分析得出,在1200℃~1400℃温度范围内,随着温度的升高,三种先驱体的裂解产物均发生了由非晶态向晶态的转变。连接实验表明,采用PSZ、PSO为粘接材料均能获得较好的连接效果,连接件剪切强度分别达38.6MPa和33.2MPa,连接层厚度小于5μm,其结构较为均匀致密,与基体间界面接合良好;采用PCS为粘接材料时,不能获得有效的连接强度。  相似文献   

8.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:6,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

9.
研究了廉价聚硅氧烷的交联与裂解情况,并以其为先驱体转化制备Si-O-C陶瓷基复合材料,结果表明,在氯铂酸的催化下,聚硅氧烷与二乙烯基苯可以交联固化,当聚硅氧烷/二乙烯基苯摩尔比为1:0.5时,陶瓷产率达60.52%,经6次浸渍-交-裂解过程制备出碳纤维三维编织物增强陶瓷基复合材料,其密度达到1.59g/cm^3,弯曲强度达到321MPa,断裂韧性达到9.38MPa.m^1/2.  相似文献   

10.
正近日,清华大学摩擦学国家重点实验室吕志刚课题组在陶瓷增材制造研究上取得新进展。他们利用光固化陶瓷增材制造技术制备复杂陶瓷型芯并进行了单晶叶片浇注验证,型芯性能满足单晶叶片的浇注要求。相关成果以《复杂陶瓷型芯增材制造及浇注工艺验证》为题,于2021年2月发表在《机械工程学报》上,并被选为封面文章。熔模铸造是航空发动机空心涡轮叶片的核心成形工艺,而陶瓷型芯是获得叶片内腔的重要基础。由于叶片冷却效率提升的需要,叶片内腔结构日趋复杂,而对应  相似文献   

11.
以紫外光固化巯基/乙烯基硅氮烷共聚体系制备了不同结构的聚合物陶瓷先驱体,高温裂解后得到氮化硅陶瓷,用X射线衍射仪,场发射扫描电镜和能谱仪等手段对巯基官能度、巯基化合物分子尺寸、巯基/乙烯基硅氮烷配比以及惰性填料进行了表征,研究了聚合物先驱体的结构对氮化硅陶瓷的结晶度和晶粒尺寸的影响,结果表明:巯基单体官能度和分子尺寸的增加导致先驱体陶瓷的结晶度提高以及平均晶粒尺寸降低;巯基单体相对含量的增加导致先驱体陶瓷的结晶度增加,乙烯基与巯基摩尔比为1:0.5时平均晶粒尺寸出现峰值;β-Si3N4粉体惰性填料的加入能明显抑制先驱体陶瓷的尺寸收缩.  相似文献   

12.
结合树脂传递模塑(RTM)和先驱体浸渍裂解技术,以聚硅氧烷(PSO)为先驱体,制备出复杂形状的Cf/Si-O-C陶瓷基复合材料应用构件。根据RTM的工艺要求,研究了二乙烯基苯(DVB)/PSO的交联和裂解,DVB/PSO粘度与温度和时间的关系,DVB/PSO与碳纤维的润湿性以及作用作脱模剂的TiO2薄膜的制备。  相似文献   

13.
聚合物先驱体材料体系的陶瓷化研究进展与展望   总被引:1,自引:0,他引:1  
分析了先驱体转化陶瓷法制备陶瓷涂层的优缺点,阐述了高陶瓷产率聚合物先驱体制备陶瓷涂层的研究现状,分析了聚合物先驱体制备陶瓷涂层存在的问题,提出了探索新的可控制备高质量陶瓷涂层的方法与技术,研制高陶瓷产率的裂解材料体系,注重裂解材料体系的复合化发展和不断完善裂解形成陶瓷涂层的机理是今后需要重点发展的方向。  相似文献   

14.
近年来,增材制造技术作为一种新兴的制造技术受到了广泛关注。该技术在高性能陶瓷材料的成型制造领域具有巨大的发展潜力,有望突破传统陶瓷加工和生产的技术瓶颈,极大提升高性能陶瓷产品的设计和制备的自由度,从而为高性能陶瓷材料制造技术的发展提供变革性的推动力。前驱体转化陶瓷通过化学方法制得聚合物,再经热处理转化为陶瓷材料。聚合物前驱体充分利用了自身良好的可加工性特点,实现了目标结构的预成型,并通过热处理工艺获得传统陶瓷工艺难以获得的先进陶瓷材料。而聚合物前驱体材料与增材制造技术的结合更受到了极大关注。本文在介绍聚合物前驱体增材制造技术特点的基础上,系统阐述了聚合物前驱体增材制造技术的研究与应用前沿的现状与趋势,并分析了聚合物前驱体增材制造技术面对的挑战以及未来发展方向。  相似文献   

15.
超高温氧化物共晶陶瓷具有优异的高温强度、高温蠕变性能、高温结构稳定性以及良好的高温抗氧化和抗腐蚀性能, 成为1400 ℃以上高温氧化环境下长期服役的新型候选超高温结构材料之一, 在新一代航空航天高端装备热结构部件中具有重要的应用前景。基于熔体生长技术, 以选择性激光熔化和激光定性能量沉积为代表的激光增材制造技术具有一步快速近净成形大尺寸、复杂形状构件的独特优势, 近年来已发展成为制备高性能氧化物共晶陶瓷最具潜力的前沿技术。本文从工作原理、成形特点、技术分类等方面概述了基于熔体生长的两种典型激光增材制造技术, 综述了激光增材制造技术在超高温氧化物共晶陶瓷制备领域的研究现状和特点优势, 重点介绍了选择性激光熔化和激光定向能量沉积超高温氧化物共晶陶瓷在激光成形工艺、凝固缺陷控制、凝固组织演化、力学性能等方面的研究进展。最后, 指出了实现氧化物共晶陶瓷激光增材制造工程化应用亟需突破的关键瓶颈, 并对该领域未来的重点发展方向进行了展望。  相似文献   

16.
钴基高温合金是一种在高温下具有高强度、良好的耐热、耐磨和耐腐蚀性能的材料,被广泛用于航空航天等领域。钴基高温合金增材制造技术具有材料利用率高、制造周期短和能够制造较为复杂零件等优点,相对于传统制造技术有巨大的优势,受到了社会的广泛关注。对钴基高温合金的合金化原理进行了阐述,总结了国内外钴基高温合金增材制造所使用的不同工艺方法,重点对钴基激光增材制造技术、钴基电子束激光增材制造技术进行了分析,综述了各种方法的研究现状和最新成果。评价了钴基高温合金增材制造技术在材料利用率、内部缺陷、成形精度、相关标准化方面的不足,并对钴基高温合金增材制造技术发展方向提出了预测。  相似文献   

17.
聚硅氧烷先驱体转化制备低成本Si-O-C陶瓷基复合材料   总被引:7,自引:0,他引:7  
研究了廉价聚硅氧烷的交联与裂解情况 ,并以其为先驱体制备出Si O C陶瓷基复合材料。结果表明 ,在氯铂酸的催化下 ,聚硅氧烷与二乙烯基苯可以交联固化。当聚硅氧烷 二乙烯基苯摩尔比为 1∶0 5时 ,陶瓷产率达 6 0 5 2 %。经 6次浸渍 交联 裂解过程制备出碳纤维三维编织物增强陶瓷基复合材料 ,其密度达到1 5 9g cm3 ,弯曲强度达到 32 1MPa ,断裂韧性达到 9 38MPa·m1 2 。  相似文献   

18.
目的 利用光固化增材制造技术成形复杂形状陶瓷零件。方法 以光敏树脂和陶瓷粉体混合得到氧化铝和氧化硅陶瓷浆料,浆料固体含量体积分数均超过55%。采用基于数字光处理技术的光固化增材制造设备,设计了一种栅栏式刮刀,可实现打印过程中高固含量浆料的均匀涂层和搅拌。光源波长为405 nm,面光源像素尺寸为50 μm,最小分层厚度为10 μm。在5 mW/cm2光强下分层曝光,分析在不同粉体的浆料固化性能,得到陶瓷坯体,经过脱脂烧结,完成陶瓷成形。结果 氧化硅浆料的透光性明显强于氧化铝浆料,氧化铝浆料的临界曝光强度更容易引发固化反应,测试件最小壁厚为0.2 mm,最小可成形孔为0.1 mm,并对氧化铝齿轮、螺钉、镂空摆件及氧化硅陶瓷型芯等复杂结构的陶瓷零件进行了验证。结论 基于光固化成形的增材制造可以实现高精度的复杂陶瓷零件成形,对拓展陶瓷成形方法具有重要意义。  相似文献   

19.
在先驱体转化陶瓷基复合材料的制备中,坯体在裂解前后的体积发生变化。引入体系体积收缩率参数,对单一先驱体转化纤维增强陶瓷基复合材料致密化模型进行了修正。同时,分别对含惰性填料和/或活性填料的先驱体浆料浸渍-裂解纤维增强陶瓷基复合材料致密化进行了模型分析。从理论上揭示了复合材料的浸渍-裂解周期与材料的理论密度和理论孔隙率之间的关系。当先驱体浆料中含有活性填料时,复合材料的理论密度和理论孔隙率与活性填料的反应陶瓷产率、反应密度比、体积收缩率有密切的数学关系。在先驱体中引入活性填料比引入惰性填料能更为有效地提高材料的密度,降低材料的孔隙率。  相似文献   

20.
李恩重  郭伟玲  刘军  于鹤龙  徐滨士 《材料导报》2021,35(21):21151-21158
随着金属零部件服役工况条件的日益苛刻,针对金属零部件不同的服役条件和失效特点,选择不同的陶瓷材料体系,采用适当工艺技术在金属零部件表面制备高性能的陶瓷涂层防护涂层并赋予其特殊功能,已成为解决金属零部件在苛刻工况下可靠服役的有效途径.先驱体转化陶瓷法作为一种原位制备陶瓷涂层的新型方法,利用先驱体聚合物良好的流动性、成型性、分子结构可设计性等特点,将先驱体涂层通过裂解转化为陶瓷涂层,在材料表面形成致密的防护涂层.裂解是先驱体从有机物转化为陶瓷涂层的重要途径,传统加热炉裂解利用程序化升温可在金属、多孔材料、纤维或纤维增强复合材料表面实现陶瓷涂层的连续化、批量化制备,设备简单,易于控制,但加热炉裂解对基体的热影响大,无法在熔点较低或结构复杂的基体上制备陶瓷涂层.激光裂解可选择性地控制热量的输入,裂解迅速、加热均匀,对基体热影响小,可制备出具有特殊成分的陶瓷涂层,但先驱体要能够吸收激光,激光裂解效率较低.离子辐照是无热裂解方式,裂解迅速,但效率低、成本较高.本文总结了先驱体转化陶瓷涂层裂解方法的研究进展,分析了加热炉裂解、激光裂解和离子辐照裂解的优缺点.未来将探索新的可控制备陶瓷涂层的方法与技术,揭示先驱体转化陶瓷微观结构的演变规律,实现陶瓷涂层致密化和裂纹缺陷的精确控制是今后需要重点发展的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号