首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a regenerative step-up/step-down DC-DC zero-voltage-switching pulsewidth-modulation converter with active clamping. The switch losses are reduced due to the implementation of a simple active snubber circuit that provides soft commutation in all the switches of the converter. The theoretical analysis, basic equations, design methodology, and experimental results are shown in this paper. A control methodology to assure the output voltage regulation is also proposed. The main advantages of the proposed power converter are the small number of components, simplicity of the controller, robustness, small weight and size, and high efficiency.  相似文献   

2.
3.
This paper presents the theoretical analysis of the three-phase zero voltage switching pulsewidth modulation dc-dc converter associated with a double Wye connected rectifier, delta primary, using a special switching scheme in order to maintain equilibrium among the currents through the output filters. The operating stages are described and the simulation and experimental results of a 6-kW prototype are presented  相似文献   

4.
This paper presents a new topology named zero-voltage switching (ZVS) resonant reset dual switch forward dc-dc converter, which, compared with resonant reset single switch forward dc-dc converter, maintains the advantage that duty cycle can be more than 50%, at the same time disadvantages of high voltage stress for main switches and low efficiency are overcome. In addition, ZVS is achieved for all switches of the presented topology. Therefore, this proposed topology is very attractive for high voltage input, wide range, and high efficiency applications. In this paper, the operation principle and characteristic of this topology are analyzed in detail. Next, the design consideration is presented. Finally, the advantages mentioned above are verified by experimental results  相似文献   

5.
A new isolated current-fed pulsewidth modulation dc-dc converter-current-fed dual-bridge dc-dc converter-with small inductance and no deadtime operation is presented and analyzed. The new topology has more than 3times smaller inductance than that of current-fed full-bridge converter, thus having faster transient response speed. Other characteristics include simple self-driven synchronous rectification, simple housekeeping power supply, and smaller output filter capacitance. Detailed analysis shows the proposed converter can have either lower voltage stress on all primary side power switches or soft switching properties when different driving schemes are applied. A 48-V/125-W prototype dc-dc converter with dual output has been tested for the verification of the principles. Both simulations and experiments verify the feasibility and advantages of the new topology  相似文献   

6.
介绍了一种改进型的带有箝位二极管的零电压开关(ZVS)全桥三电平DC/DC变换器,详细分析了电路的工作原理。设计实例和仿真结果验证了理论分析的正确性。  相似文献   

7.
This paper proposes an improved full bridge dc–dc converter, which can achieve zero-voltage-switching (ZVS) with wide input voltage range and load range. The operation principle of the converter and the optimal design considerations for high efficiency and ZVS range are analyzed. By adding two clamp diodes and two small coupled inductors at the primary side of the transformer, the voltage ringing across rectifier diodes is reduced. Therefore, Schottky diodes can be employed to reduce conduction loss, and high efficiency is achieved. A 1.2-kW/105-kHz prototype was made with an efficiency higher than 95% at full load to verify the theoretical analysis.  相似文献   

8.
ZVS移相全桥PWM变换器实现了超前桥臂与滞后桥臂的零电压开关(ZVS)。文章介绍了这种变换器的工作原理,并利用UC3879芯片和IR2110芯片分别设计了该变换器的控制电路和驱动电路,最后利用仿真和实验验证了设计的可行性。  相似文献   

9.
一种带辅助电路的全桥移相ZVS变换器拓扑的设计   总被引:1,自引:0,他引:1       下载免费PDF全文
宋云庆  徐申  吴建辉   《电子器件》2008,31(2):619-622
许多结构诸如添加饱和电感、在滞后臂并联由电感和开关管组成的辅助电路、副边采用倍流整流电路等被用来拓宽传统全桥ZVS拓扑实现零电压开关的负载范围,减小占空比的丢失,但这些方法往往成本高,设计难度大.我们以低成本,设计简单同时又能满足系统性能为出发点给出了一种带简单的LC辅助谐振电路的变换器拓扑.论文阐述了该变换器的基本工作原理,分析了占空比的丢失和实现ZVS的范围.在设计中通过折中考虑各个元件参数使得系统获得最佳性能,并给出了一个1.2 kW变换器的设计实例来说明如何找到系统的最佳参数.  相似文献   

10.
An accurately regulated multiple-output zero-voltage switching (ZVS) DC-DC converter is proposed. The converter is composed of three outputs altogether. The first and second outputs are regulated through the duty cycle control of two asymmetrical half bridge converters, while the third output is regulated through the phase shift of the two asymmetrical half bridge converters. The characteristic of this multiple-output dc-dc converter is analyzed and design process is investigated. ZVS is realized for all the main switches. Therefore this multiple-output dc-dc converter can operate with higher efficiency at higher switching frequency. The operation stages, ZVS condition and control detail are also presented. A 400 V input, 48 V/10 A, 5 V/20 A, 12 V/5 A outputs prototype is built to verify the design. The efficiency at rated input voltage full load is 93.36%.  相似文献   

11.
A soft-switching converter is presented in this paper to achieve a zero-voltage-switching (ZVS) turn on for all switches. Two half-bridge converters with asymmetric pulsewidth-modulation scheme are connected in parallel to control the output voltage at the desired value and achieve load-current sharing. Based on the output capacitance of power switches and the resonant inductance, including the external inductance and the transformer leakage inductance, the resonance can be achieved at the transition interval of power switches. Therefore, the ZVS turn on of power switches can be realized. The peak voltage of the power switches is limited to input dc voltage. The center-tapped rectifier is adopted at the transformer secondary side to achieve a full-wave rectification. Operation principles, steady-state analysis, and design equations of the proposed converter are discussed in detail. Finally, experimental results based on a 240-W prototype are provided to verify the performance and the feasibility of the proposed converter.  相似文献   

12.
一种新颖有源箝位ZVS正激变换器的研究   总被引:2,自引:0,他引:2  
介绍了一种中心抽头全波整流有源箝位ZVS正激变换器的工作原理及主要参数计算。有源箝位电路由一个箝位开关管和箝位电容组成。变压器磁芯实现无损复位,励磁能量和漏感能量全部传递到负栽.磁芯利用率高,功率开关管承受电压应力降低。通过变压器漏感与开关管输出电容的谐振,主开关管与箝位开关管都可以实现ZVS开通,提高了变换器工作效率。文章首先分析了变换器工作原理,然后给出了主要参数的计算方法,最后通过样机(48V输入5V/20A输出)实验验证了该拓扑的高效性能。  相似文献   

13.
A nonlinear control is proposed and its application to the regulation of the dc-dc converters of the boost and buck types is investigated. The proposed controller, which assumes the exponential form of the linear multiloop controller, provides an additional tuning parameter which can used to modify the output response. The system stability in the presence of uncertain load and line voltage as well as the relationship between the nonlinear and linear control strategies are studied. Numerical and experimental results to illustrate the features of the proposed strategy are also presented  相似文献   

14.
This paper investigates a mixed synchronous/asynchronous digital voltage-mode controller for DC-DC converters. In the proposed control architecture, the turn-on switching event is determined asynchronously by comparing the converter output voltage and a synchronously generated voltage ramp driven by the digital control using a low-resolution digital-to-analog converter. Switch turn-off is determined synchronously by the system clock. In the proposed approach, the derivative action of the proportional-integral-derivative voltage-mode controller is inherently obtained by the frequency modulation, without requiring the digital computation of the derivative action. A simplified small-signal model is also derived in order to analyze the performance achievable by the proposed solution. This control architecture features good dynamic performance, and frequency modulation during transients. Simulation and experimental results on a synchronous buck converter, where the digital control has been implemented in field programmable gate array, confirm the effectiveness of the proposed solution.  相似文献   

15.
This paper focuses on a new three-phase high power current-fed dc/dc converter with an active clamp. A three-phase dc/dc converter with high efficiency and voltage boosting capability is designed for use in the interface between a low-voltage fuel-cell source and a high-voltage dc bus for inverters. Zero-voltage switching in all active switches is achieved through using a common active clamp branch, and zero current switching in the rectifier diodes is achieved through discontinuous current conduction in the secondary side. Further, the converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Moreover, a delta-delta connection on the three-phase transformer provides parallel current paths and reduces conduction losses in the transformer windings. An efficiency of above 93% is achieved through both improvements in the switching and through reducing conduction losses. A high voltage ratio is achieved by combining inherent voltage boost characteristics of the current-fed converter and the transformer turns ratio. The proposed converter and three-phase PWM strategy is analyzed, simulated, and implemented in hardware. Experimental results are obtained on a 500-W prototype unit, with all of the design verified and analyzed.   相似文献   

16.
The objective of this paper is to propose a simple digital current mode control technique for dc-dc converters. In the proposed current-mode control method, the inductor current is sampled only once in a switching period. A compensating ramp is used in the modulator to determine the switching instant. The slope of the compensating ramp is determined analytically from the steady-state stability condition. The proposed digital current-mode control is not predictive, therefore the trajectory of the inductor current during the switching period is not estimated in this method, and as a result the computational burden on the digital controller is significantly reduced. It therefore effectively increases the maximum switching frequency of the converter when a particular digital signal processor is used to implement the control algorithm. It is shown that the proposed digital method is versatile enough to implement any one of the average, peak, and valley current mode controls by adjustment of the sampling instant of the inductor current with respect to the turn-on instant of the switch. The proposed digital current-mode control algorithm is tested on a 12-V input and 1.5-V, 7-A output buck converter switched at 100kHz and experimental results are presented  相似文献   

17.
变压器在DC/DC转换器中的作用举足轻重。变压器性能的提舞对DC/DC转换器至关重要。与传统的线绕型变压器相比。一些新型变压器技术在成本、体积、性能等方面更加胜出一筹。将DC/DC转换器的。市场竞争力提高到了一个新的水平。  相似文献   

18.
This paper describes a bidirectional isolated dc-dc converter considered as a core circuit of 3.3-kV/6.6-kV high-power-density power conversion systems in the next generation. The dc-dc converter is intended to use power switching devices based on silicon carbide (SiC) and/or gallium nitride, which will be available on the market in the near future. A 350-V, 10-kW and 20 kHz dc-dc converter is designed, constructed and tested. It consists of two single-phase full-bridge converters with the latest trench-gate insulated gate bipolar transistors and a 20-kHz transformer with a nano-crystalline soft-magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full-bridge converters. The overall efficiency from the dc-input to dc-output terminals is accurately measured to be as high as 97%, excluding gate drive and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC-based power switching devices. Loss analysis clarifies that the use of SiC-based power devices may bring a significant reduction in conducting and switching losses to the dc-dc converter. As a result, the overall efficiency may reach 99% or higher  相似文献   

19.
This paper investigates applications of current-mode, shared-bus commercial-off-the-shelf (COTS) dc-dc converters to power system architectures configured as parallel-input, series-output (PISO) and series-input, parallel-output (SIPO). By employing a PISO (or SIPO) architecture, current-mode COTS converters can transform their system input voltage to higher (or lower) system output voltage, provide ease and flexibility of power expansion, and preserve system efficiencies equal to those of standalone converters. Nonuniform output (or input) voltages still exist within a PISO (or SIPO) power system using identical converters when the system lacks proper distribution control of the series connected output (or input) voltages-and thus, system reliability suffers from thermal overstress to the converters that contribute a greater portion of the output power. Through unified approaches of voltage distribution control for the PISO and SIPO architectures, a series-connected converter power system attains robust stability and reliability. Two effective approaches to uniform voltage distribution control-the central-limit and maximum-limit voltage distribution-will be discussed. Both computer simulation and experimental prototypes validate both of the uniform voltage distribution power converter architectures.  相似文献   

20.
This paper proposes a novel three-phase ac-dc buck-boost converter. The proposed converter uses four active switches, which are driven by only one control signal. This converter is operated in discontinuous conduction mode (DCM) by using the pulsewidth modulation (PWM) technique, and the control scheme very easily and simply achieves purely sinusoidal input current, high power factor, low total harmonic distortion of the input current and step-up/down output voltage. Also, the proposed converter provides a constant average current to the output capacitor and load in each switching period. Thus, the ripple component of sixth times line frequency will not appear in the output voltage. Therefore, a smaller output capacitor can be used in the proposed converter. Moreover, the steady-state analysis of voltage gain and boundary operating condition are presented. Also, the selections of inductor, output capacitor and input filter are depicted. Finally, a prototype circuit with simple control logic is implemented to illustrate the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号